scholarly journals A theoretical analysis of temperature rise of hydrogen in high-pressure storage cylinder during fast filling process

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097192
Author(s):  
Ji-Qiang LI ◽  
No-Seuk Myoung ◽  
Jeong-Tae Kwon ◽  
Seon-Jun Jang ◽  
Taeckhong Lee ◽  
...  

During the fast filing process, thermal stress is generated due to the increase in the pressure and temperature of hydrogen in the hydrogen storage tank. For its safety purpose, it is necessary to predict and control the temperature change in the tank. The aim of this study is quantitative analysis of the final temperature and the mass of the hydrogen in the tank through experimental and theoretical methods. In this paper; Theoretical model for adiabatic and non-adiabatic real filling processes of high pressure hydrogen cylinder has been proposed. The cycle of filling process from the initial vacuum state is called the “First cycle.” After the first cycle is completed, there is a certain residual pressure in the tank. Then the second filling process called “Second cycle” begins. The final temperature in fast filling of hydrogen storage cylinders depends on targeted pressure, initial pressure and temperature, and mass filling rate. The final temperature of hydrogen in the tank was calculated from the real gas equation of state, mass and energy conservation equations. As a result of the analysis, based on the first cycle analysis of high pressure tank, the final temperatures were calculated to be 442.11 K for the adiabatic filling process, and 422.37 K for the non-adiabatic process. Based on the second cycle analysis of high pressure tank, the final temperature were obtained as 397.12 K and 380.8 K for the adiabatic and non-adiabatic processes, respectively. The temperatures calculated from the theoretical non-adiabatic condition were lower than those from the adiabatic condition by 5%. The results of this study can provide a reference basis in terms of how to control the temperature in the actual hydrogen storage tank during the fast filling process and how to improve safety.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6428
Author(s):  
Ji-Qiang Li ◽  
No-Seuk Myoung ◽  
Jeong-Tae Kwon ◽  
Seon-Jun Jang ◽  
Taeckhong Lee

The hydrogen compression cycle system recycles hydrogen compressed by a compressor at high pressure and stores it in a high-pressure container. Thermal stress is generated due to increase in the pressure and temperature of hydrogen in the hydrogen storage tank during the fast filing process. For the sake of safety, it is of great practical significance to predict and control the temperature change in the tank. The hydrogen charging process in the storage tank of the hydrogen charging station was studied by experimentation and simulation. In this paper, a Computational Fluid Dynamics (CFD) model for non-adiabatic real filling of a 50 MPa hydrogen cylinder was presented. In addition, a shear stress transport (k-ω) model and real gas model were used in order to account for thermo-fluid dynamics during the filling of hydrogen storage tanks (50 MPa, 343 L). Compared to the simulation results with the experimental data carried out under the same conditions, the temperatures calculated from the simulated non-adiabatic condition results were lower (by 5.3%) than those from the theoretical adiabatic condition calculation. The theoretical calculation was based on the experimentally measured pressure value. The calculated simulation mass was 8.23% higher than the theoretical result. The results of this study will be very useful in future hydrogen energy research and hydrogen charging station developments.


2014 ◽  
Vol 16 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Mahdi Deymi-Dashtebayaz ◽  
Mahmood Farzaneh-Gord ◽  
Hamid Reza Rahbari

Abstract In CNG station, the fuel is usually stored in the cascade storage bank to utilize the station more efficiently. The cascade storage bank is generally divided into three reservoirs, commonly termed low, medium and high-pressure storage bank. The pressures within these reservoirs have huge effects on the performance of the stations. In the current study, a theoretical simulation based on mass balance and thermodynamic laws has been developed to study the dynamic fast fi lling process of vehicle’s (NGV) cylinder from the cascade storage bank. The dynamic change of the parameters within the storage bank is also considered. Natural gas is assumed to contain only its major component, methane, and so thermodynamic properties table has been employed for finding the thermodynamics properties. Also the system is assumed as a lumped adiabatic system. The results show that the initial pressure of the cascade storage bank has a big effect on the storage bank volumes for bringing up the NGV cylinder to its target pressure (200 bar). The results also showed that ambient temperature has effect on the refueling process, chiefly the final NGV cylinder and the cascade storage bank conditions


Author(s):  
Kesheng Ou ◽  
Jiong Zheng ◽  
Weijian Luo ◽  
Xufeng Li ◽  
Jingbiao Yang ◽  
...  

To prevent the on-board storage tank from burst at vehicle fire scenario, pressure relief device (PRD) is required to be installed to the tank and timely activated to release internal high-pressure hydrogen. Actually, there are two types of PRDs (i.e. thermally-activated and pressure-activated PRDs), and four types of tanks such as all-metal, hoop/fully-wrapped with metal liner and fully-wrapped with plastic liner. Great importance should be attached to the using of PRDs for all types of tanks in consideration of the risk of tank burst caused by fire. However, there are great differences in the requirements for the using of PRDs in hydrogen storage tank standards such as GTR-HFCV, ISO/TS 15869, JARI S 001 and TSG R006. Compared with compressed natural gas tank standards, PRD requirements in hydrogen storage tank standards are discussed in this paper. Moreover, key influencing factors on the activation of thermally-activated and pressure-activated PRDs are analyzed in detail based on fire test data. Finally, some advices for the using of PRDs of hydrogen storage tanks are proposed.


2018 ◽  
Vol 55 ◽  
pp. 223-231 ◽  
Author(s):  
Chuanchuan Shen ◽  
Li Ma ◽  
Gai Huang ◽  
Yingzhe Wu ◽  
Jinyang Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document