scholarly journals Response analysis of 3D braided two-stage gear system excited by different frequency signals

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110051
Author(s):  
Weiliang Zhang ◽  
Xupeng Wang ◽  
Xiaomin Ji ◽  
Xinyao Tang ◽  
Fengfeng Liu ◽  
...  

The knitting principle of 3D braided gear was studied, and the dynamic model of the two-stage gear system was established. The fourth-order Runge-Kutta method was used to numerically simulate the dynamic characteristics of common gear and 3D braided gear. The results showed that the fundamental frequency ω1 of the static transmission error excitation had the greatest effect on the speed and frequency characteristics of the first-stage gear along the meshing line. The research on frequency characteristics of common gear and 3D braided gear shows that the fundamental frequency ω1 of the static transmission error excitation has a large effect on the speed and frequency characteristics of the first-stage gear along the meshing line. With the reduction of the gear mass and moment of inertia, the amplitude in the low-frequency band increases. The vibration resonance of the system is studied by defining the amplitude gain of the response of the system output at the low-frequency signal ω3. The results show that with the reduction of gear mass and moment of inertia, when the input stage torque fluctuation frequency is Ω > 5, the fluctuation of amplitude gain Q disappears, which indicates that the vibration resistance of the 3D braided gear to high-frequency input stage torque fluctuation frequency is greatly improved.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jianfeng Ma ◽  
Chao Li ◽  
Lingli Cui

For the nonlinear disturbance actual issues of the model space drive mechanism two-stage spur gear system, a nonlinear dynamic model of 14-DOF (degree of freedom) two-stage spur gear with time-varying stiffness and damping was established. This model has been developed previously by the authors to access the large inertia on the dynamic response of spur gear space driving mechanism, and its effectiveness was proved by a motion simulation experiment. In this paper, the profile error (PE) and the index error (IE) were enhanced in the dynamic model. The effects of profile error, index error, and variable load torque on transmission error (TE) were analyzed, while the optimization was proposed according to the analyzed result. The peak-to-peak value of the optimized load transmission error (LTE) was reduced by 60.7%, which improved the transmission accuracy and reduced the phenomenon of disturbance. The research of nonlinear dynamical model of two-stage spur gear and the TE of the large inertia load were enriched, which provided an important reference for the actual design of the gear system.


2010 ◽  
Vol 450 ◽  
pp. 341-344
Author(s):  
Quan Shi ◽  
Xiao Wei Cheng ◽  
Dong Guo ◽  
Xiao Hui Shi

Vibration and noise problems of the gear system have been widely concerned in recent years. A study of transmission error is conducted to verify the sources of the vibration and noise. The tooth meshing process is analyzed with consideration of the shaft, bearing, box, tooth deformation, and tooth micro-modification in this paper. The transmission error of a two-stage gearbox is discussed based on a theoretical calculation model of gear transmission error. Then the transmission error is measured in different conditions on a test system of two-stage gearbox. By comparing to the test data, the theoretical model of the two-stage transmission error has been refined and a more reasonable model is presented. The study plays an important role in reducing vibration and noise of the gear system.


2006 ◽  
Vol 110 ◽  
pp. 151-162 ◽  
Author(s):  
Daisuke Suzuki ◽  
Shigeru Horiuchi ◽  
Jin Hwan Choi ◽  
Han Sik Ryu

The prime source of vibration and noise in a gear system is originated from transmission error between the meshing gears. In this paper, the dynamic modeling method and response of a spur gear pair for the efficient system simulation are investigated by using a detailed contact analysis at each time step. Input values such as time-varying mesh stiffness and static transmission error excitation are not required in this investigation because mesh forces are obtained by contact analysis directly. The efficient contact search kinematics and algorithms in the context of the compliant contact model are developed to detect the interactions between teeth surfaces. In this investigation the compliant force model based on the Herzian law is employed using Coulomb friction force model, and dynamic transmission error (DTE) and mesh frequency values of contacting gear system are also illustrated.


2010 ◽  
Vol 97-101 ◽  
pp. 2764-2769
Author(s):  
Si Yu Chen ◽  
Jin Yuan Tang ◽  
C.W. Luo

The effects of tooth modification on the nonlinear dynamic behaviors are studied in this paper. Firstly, the static transmission error under load combined with misalignment error and modification are deduced. These effects can be introduced directly in the meshing stiffness and static transmission error models. Then the effect of two different type of tooth modification combined with misalignment error on the dynamic responses are investigated by using numerical simulation method. The numerical results show that the misalignment error has a significant effect on the static transmission error. The tooth crowning modification is generally preferred for absorbing the misalignment error by comparing with the tip and root relief. The tip and root relief can not resolve the vibration problem induced by misalignment error but the crowning modification can reduce the vibration significantly.


Author(s):  
Vinayaravi R ◽  
Jayaraj Kochupillai ◽  
Kumaresan D ◽  
Asraff A. K

Abstract The objective of this paper is to investigate how higher damping is achieved by energy dissipation as high-frequency vibration due to the addition of impact mass. In an impact damper system, collision between primary and impact masses cause an exchange of momentum resulting in dissipation of energy. A numerical model is developed to study the dynamic behaviour of an impact damper system using a MDOF system with Augmented Lagrangian Multiplier contact algorithm. Mathematical modelling and numerical simulations are carried out using ANSYS FEA package. Studies are carried out for various mass ratios subjecting the system to low-frequency high amplitude excitation. Time responses obtained from numerical simulations at fundamental mode when the system is excited in the vicinity of its fundamental frequency are validated by comparing with experimental results. Magnification factor evaluated from numerical simulation results is comparable with those obtained from experimental data. The transient response obtained from numerical simulations is used to study the behaviour of first three modes of the system excited in vicinity of its fundamental frequency. It is inferred that dissipation of energy is a main reason for achieving higher damping for an impact damper system in addition to being transformed to heat, sound, and/or those required to deform a body.


Author(s):  
Ahmet Kahraman

Abstract In this paper, the dynamic behavior of a multi-mesh helical gear train is studied. The gear train consists of three helical gears, with one of the gears in mesh with the other two. An 18-degree-of-freedom dynamic model which includes transverse, torsional, axial and rotational (rocking) motions of the flexibly mounted gears is developed. Two different loading conditions are identified. For case I, the system is driven by the gear in the middle, and for case II, the system is driven by one of the gears at either end of the gear train. Gear mesh phases under each loading condition are determined. The natural modes are predicted, and effects of the helix angle and the loading condition on the natural modes are explained. The forced response, which includes dynamic mesh and bearing forces, due to the static transmission error excitation is found. Effects of loading conditions and asymmetric positioning on the response are also explored. The results suggest that the dynamic forces are lower if the number of teeth of the gear in the middle is (i) an odd number for case I type loading, and (ii) an even number for case II type loading.


Sign in / Sign up

Export Citation Format

Share Document