scholarly journals Investigation on transient dynamic balancing of the power turbine rotor and its application

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110073
Author(s):  
Wangqun Deng ◽  
Mengyu Tong ◽  
Qingyang Zheng ◽  
Xingmin Ren ◽  
Yongfeng Yang

In the dynamic balancing procedure of the rotor system, the unbalance is determined as a principal parameter which should be identified firstly. In actual engineering, the interference of external noise on the rotor is usually the main factor influencing the identification. In this paper, we focus on the unbalance identification of the power turbine rotor while the vibration response is influenced by signal interference during the balancing process in actual engineering. Fast Fourier Transform (FFT) and wavelet transform are used to analyze the collected original signal. Butterworth filter and Chebyshev type I filter are employed to test signal processing. The transient dynamic balancing method and the single plane influence coefficient method are used to balance the three balancing bosses of the rotor, and the balance efficiency is compared. The results show that, the signal fluctuation of boss 3 in high-frequency band is less than boss 1 and boss 2. Butterworth filter is more effective than Chebyshev type I filter in filtering the transient response data. The transient dynamic balancing method requires one test run without any trial-weights. More importantly, compared with the influence coefficient method, the transient dynamic balancing method has a better balancing effect.

2013 ◽  
Vol 483 ◽  
pp. 174-176 ◽  
Author(s):  
Shu Ping Cai ◽  
Ting Zhao

Abstract:.:Intelligent teaching Dynamic balancing is a new kind of dynamic balancing test system with various functions of teaching need. It integrates the hard bearing method using A, B, C size solution with soft bearing method using the influence coefficient method solution. The system is mainly composed of machine frame, intelligent electric measuring box, high sensitive sensor and far infrared phase sensor. It has the advantages of small volume, simple operation, security with low speed,reliable and convenient operation for students. It can deepen students' understanding of balancing knowledge, which has won the national utility model patent.


Author(s):  
Yuanfeng Xia ◽  
Jian Pang ◽  
Rui Liu ◽  
Wenjuan Li ◽  
Jianchun Xu

Based on the influence coefficient method of the single-plane and multi-plane imbalance, an experimental method of a 4WD driveline system imbalance is proposed. A sensitivity theory and a testing method of influence of the 4WD driveline system imbalance on the vehicle interior 1st order vibration and noise are proposed. According to the influence coefficient method of the single plane, this paper puts forward an imbalance separation method for the driveline components, especially the imbalance separation between the driveshaft and the axle. Based on the problems and phenomena of the 1st order interior vibration and noise induced by the driveline imbalance transferring through the body floor and the interior acoustic cavity, the driveline imbalance sensitivity, the dynamic imbalance of the driveshaft and the driveline system are analyzed separately. Finally, the control methods of the dynamic imbalance and sensitivity of the 4WD vehicle driveline system are provided.


2017 ◽  
Vol 868 ◽  
pp. 218-223
Author(s):  
Jin Xiang Pian ◽  
Chun Yu Pu ◽  
Zhan Wang ◽  
Yuan Wei Qi

The development of dynamic balancing machinery has gradually become mature. Experts and scholars have developed many kinds of actuators, which can achieve dynamic balance. But the imbalance in most dynamic balancing machinery is still obtained by using the influence coefficient method. In this paper, it made an analysis of the influence coefficient method and its improved method. The analysis indicates that, with the limitation of adding trial mass, these methods are mostly used in experimental environment. But for the actual production and processing, the feasibility of the application is not so hot. Therefore, looking for an imbalance calculation method without trial mass is particularly important, which is the development direction of dynamic balance technology in future.


1987 ◽  
Vol 109 (2) ◽  
pp. 162-167 ◽  
Author(s):  
Louis J. Everett

This paper presents, and experimentally verifies, a two-plane balancing technique for rigid rotors and possibly flexible rotors operating at a constant speed. The technique, based upon influence coefficients, extends the single-plane four-run balancing procedure to two planes. Like the four-run method, this technique is most easily performed graphically and does not require response phase measurement. Despite the additional runs required to obtain data, its simplicity and applicability to a wide range of equipment renders it more useful, in some cases, than the standard two-plane influence coefficient method.


2013 ◽  
Vol 365-366 ◽  
pp. 211-215 ◽  
Author(s):  
Xiang Xu ◽  
Ping Ping Fan

A rigid rotor dynamic balance model was established to analyze the vibration form of a rigid rotor under unbalance inertia force. The principle of two-plane correction with the influence coefficient method had been conducted, and the principle of the cross-correlation method calculating amplitude and phase of unbalance vibration signal was introduced. The method was found to be effective and practical. A dynamic balance test program was performed on a rigid rotor vibration simulation instrument and a dynamic balancing analyzer based on LabVIEW, which showed that rigid rotor dynamic balancing by two-plane correction with the influence coefficient method could satisfy the performance and required precision.


2014 ◽  
Vol 697 ◽  
pp. 222-225
Author(s):  
Jun Chang

measuring principle of dynamic unbalance and calibration process is the key point of the crankshaft production, which refers to the unbalance theory, mechanical design, sensors, and signal analysis. It is a complex and comprehensive technology. This paper mainly introduces the measuring principle of dynamic unbalance for crankshaft from theoretical side. Firstly, we will introduce the calculation theory of dynamic balancing; secondly, we will introduce the measuring system of crankshaft dynamic balancing, which includes support system and measuring system.Key words: dynamic balancing, influence coefficient method, support system, measuring system


Author(s):  
D. Wiese ◽  
M. Breitwieser

Abstract The following paper presents a method for balancing simple flexible rotors with the help of influence coefficients obtained by hammer beat. The method permits time savings of approx. 50% compared to the conventional influence coefficient method. Initial positive results obtained on a flexible roll are also presented.


Author(s):  
Yunjie Miao ◽  
Feng Gao ◽  
Dalei Pan

A hybrid lower extremity exoskeleton SJTU-EX which adopts a scissor mechanism as the hip and knee flexion/extension joint is proposed in Shanghai Jiao Tong University to augment load carrying for walking. The load supporting capabilities of a traditional serially connected mechanism and the scissor mechanism are compared in detail. The kinematic influence coefficient method of the kinematic and dynamic analysis is applied in the length optimization of the scissor sides to minimize the transmitting errors between the input and output motions in walking and the load capacities of different scissor mechanisms are illustrated. The optimization results are then verified by the walking simulations. Finally, the prototype of SJTU-EX is implemented with several improvements to enhance the working performances.


Sign in / Sign up

Export Citation Format

Share Document