scholarly journals Multi-degree-of-freedom vibration reduction strategy of the solar array drive system

2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110154
Author(s):  
Zhu Shi-Yao ◽  
Li Dong-Xu ◽  
Lei Yong-Jun

The operation disturbance induced by the solar array drive system (SADS) and the residual vibration of solar array following the attitude adjustment of the spacecraft obviously affect the dynamics environment, quick stabilization, and attitude stability of the high-precision spacecraft. However, these two kinds of vibration disturbance are characterized by distinct vibration categories, direction of vibration, and modal shapes. A multi-degree-of-freedom vibration reduction strategy (VRS) was presented to improve the dynamic characteristics of SADS and then to weaken these disturbances synthetically in this paper. SADS applying this VRS was modeled based on the virtual work principle, and the influence of the stiffness and damping parameters of this VRS on the SADS dynamic characteristics was analyzed. Then a prototype of vibration reduction device (VRD) was designed and verified by disturbance characteristic and modal experiments. The results indicate that the equivalent stiffness of VRD is critical to the natural frequency of SADS and thus should be carefully deliberated to avoid resonance. The equivalent damping of VRD always has positive correlation with modal damping. A good performance up to 40% in terms of operation disturbance suppression and a greater than 56% decrease of the damping time for 99% residual vibration have been obtained.

2014 ◽  
Vol 6 (4) ◽  
Author(s):  
Bahman Nouri Rahmat Abadi ◽  
S. M. Mehdi Shekarforoush ◽  
Mojtaba Mahzoon ◽  
Mehrdad Farid

The objective of this study is to present an analytical procedure for analysis of a compliant tensegrity mechanism focusing on its stiffness and dynamic characteristics. The screw calculus is used to derive the static equations and stiffness matrix of a full degree-of-freedom tensegrity mechanism, and the equations of motion are derived based on the principle of virtual work. Finally, some numerical examples are solved for the inverse dynamics of the mechanism.


2014 ◽  
Vol 657 ◽  
pp. 644-648 ◽  
Author(s):  
Andrzej Dymarek ◽  
Tomasz Dzitkowski

The paper presents the use of synthesis methods to determine the parameters of passive vibration reduction in mechanical systems. Passive vibration reduction in a system is enabled by units called dampers whose values are determined on the basis of the method formulated and formalized by the authors. The essence of the method are, established at the beginning of a task, dynamic characteristics in the form of the resonance and anti-resonance frequencies, and amplitudes of displacement, velocity or acceleration of vibration.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771370 ◽  
Author(s):  
Hai Xu ◽  
Ling-Li Cui ◽  
De-Guang Shang

The dynamic characteristics of the mill and the drive system are mutually coupled and affected closed-loop system. However, most research has considered only the vibration of the drive system or the vibration of the mill to determine the cause of the accident in the equipment condition monitoring and fault diagnosis process. Condition monitoring and fault diagnosis based on this type of approach can lead to misdiagnosis or missed diagnosis in determining faults in actual systems. So, in this study, a dynamic model of the coupling between a mill and its drive system was developed to study the interaction of the mill and the drive system with the goal of increasing the accuracy of diagnostic methods and to improve the quality of the rolled material. A nonlinear coupling dynamic model was formulated to represent the relation between the gearbox vibration amplitude and various time-varying parameters to study the effects of various parameters on the drive system vibration characteristic under unsteady lubrication. Simulations results showed that increasing the strip speed, the input strip thickness, or the output strip thickness or decreasing the lubricating oil temperature or the roller radius caused the vibration amplitude of the drive system to increase. The vibration frequency caused by variations in the strip inlet or outlet thickness can be transmitted to the drive system, and gear meshing frequency of the gearbox can be transmitted to the mill. Test data from an actual cold rolling mill verified the accuracy of the model. The model was shown to be capable of simulating the mutually coupled and affected mechanism between a mill and its drive system.


2012 ◽  
Vol 215-216 ◽  
pp. 974-977 ◽  
Author(s):  
Li Ming Lian ◽  
Gui Min Liu

The dynamic performance of asymmetric involute gear transmission system is analyzed by the MSC.ADAMS software during the paper. By comparative analyzed with the traditional dynamic characteristics of symmetrical involute straight gear transmission, it can be summarized that the asymmetric involute gear transmission system has better vibration characteristics in the course of transmission.


1965 ◽  
Vol 32 (4) ◽  
pp. 903-910 ◽  
Author(s):  
J. Denavit ◽  
R. S. Hartenberg ◽  
R. Razi ◽  
J. J. Uicker

The algebraic method using 4 × 4 matrices is extended to the analysis of velocities, accelerations, and static forces in one-degree-of-freedom, single-loop, spatial linkages consisting of revolute and prismatic pairs, either singly or in combination. The methods are well suited for machine calculations and have been tested on a number of examples, one of which is presented. Velocities and accelerations are obtained by differentiation of the matrix-loop or position equation. Static forces are found by combining the method of virtual work with the matrix-loop equation to relate the virtual displacement of the load to given virtual deformations of the links.


Sign in / Sign up

Export Citation Format

Share Document