scholarly journals Research on car-following model based on molecular dynamics

2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199300
Author(s):  
Yanfeng Jia ◽  
Dayi Qu ◽  
Lewei Han ◽  
Lu Lin ◽  
Jiale Hong

The car-following model has always been a research hot spot in the field of traffic flow theory. Modeling the car-following behavior can quantify the longitudinal interaction between cars, thereby understanding the characteristics of traffic flow, and revealing the inherent mechanisms of traffic congestion and other traffic phenomena. In fact, there is an asymmetry problem in the driver’s acceleration and deceleration operation. The existing car-following model ignores the difference between the acceleration and deceleration of cars. To solve this problem, the cars driving on the road are compared to molecules with interactions. Based on the molecular interaction potential function and the wall potential function, we construct a molecular car-following model. We use NGSIM data set to calibrate the parameters of the model through the genetic algorithm. Finally, we analyze the evolution rule of the disturbance in the traffic flow in different states with the help of the time-space diagram, and compare the molecular model and the classical optimal velocity model. The results show that the molecular car-following model can better describe the car-following behavior from the micro level.

2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Tao Wang ◽  
Jing Zhang ◽  
Guangyao Li ◽  
Keyu Xu ◽  
Shubin Li

In the traditional optimal velocity model, safe distance is usually a constant, which, however, is not representative of actual traffic conditions. This paper attempts to study the impact of dynamic safety distance on vehicular stream through a car-following model. Firstly, a new car-following model is proposed, in which the traditional safety distance is replaced by a dynamic term. Then, the phase diagram in the headway, speed, and sensitivity spaces is given to illustrate the impact of a variable safe distance on traffic flow. Finally, numerical methods are conducted to examine the performance of the proposed model with regard to two aspects: compared with the optimal velocity model, the new model can suppress traffic congestion effectively and, for different safety distances, the dynamic safety distance can improve the stability of vehicular stream. Simulation results suggest that the new model is able to enhance traffic flow stability.


2018 ◽  
Vol 32 (21) ◽  
pp. 1850241 ◽  
Author(s):  
Dong Chen ◽  
Dihua Sun ◽  
Min Zhao ◽  
Yuchu He ◽  
Hui Liu

In traffic systems, cooperative driving has attracted the researchers’ attention. A lot of works attempt to understand the effects of cooperative driving behavior and/or time delays on traffic flow dynamics for specific traffic flow models. This paper is a new attempt to investigate analyses of linear stability and weak nonlinearity for the general car-following model with consideration of cooperation and time delays. We derive linear stability condition and study how the combinations of cooperation and time delays affect the stability of traffic flow. Burgers’ equation and Korteweg de Vries’ (KdV) equation for car-following model considering cooperation and time delays are derived. Their solitary wave solutions and constraint conditions are concluded. We investigate the property of cooperative optimal velocity (OV) model which estimates the combinations of cooperation and time delays about the evolution of traffic waves using both analytic and numerical methods. The results indicate that delays and cooperation are model-dependent, and cooperative behavior could inhibit the stabilization of traffic flow. Moreover, delays of sensing relative motion are easy to trigger the traffic waves; delays of sensing host vehicle are beneficial to relieve the instability effect to a certain extent.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lei Zhang ◽  
Shengrui Zhang ◽  
Bei Zhou ◽  
Shuaiyang Jiao ◽  
Yan Huang

We investigate the dynamic performance of traffic flow using a modified optimal velocity car-following model. In the car-following scenarios, the following vehicle must continuously adjust the following distance to the preceding vehicle in real time. A new optimal velocity function incorporating the desired safety distance instead of a preset constant is presented first to describe the abovementioned car-following behavior dynamically. The boundary conditions of the new optimal velocity function are theoretically analyzed. Subsequently, we propose an improved car-following model by combining the heterogeneity of driver’s sensitivity based on the new optimal velocity function and previous car-following model. The stability criterion of the improved model is obtained through the linear analysis method. Finally, numerical simulation is performed to explore the effect of the desired safety distance and the heterogeneity of driver’s sensitivity on the traffic flow. Results show that the proposed model has considerable effects on improving traffic stability and suppressing traffic congestion. Furthermore, the proposed model is compatible with the heterogeneity of driver’s sensitivity and can enhance the average velocity of traffic flow compared with the conventional model. In conclusion, the dynamic performance of traffic flow can be improved by considering the desired safety distance and the heterogeneity of driver’s sensitivity in the car-following model.


2015 ◽  
Vol 738-739 ◽  
pp. 489-492
Author(s):  
Tong Zhou ◽  
Yu Xuan Li ◽  
Zhan Wei Bai

Based on the optimal velocity difference model (for short, OVDM) proposed by Peng et al., a new car-following model is presented by considering the leading cars’ acceleration. The linear stability condition of the new model is obtained by using the linear stability theory. Numerical simulation shows that the new model can avoid the disadvantage of negative velocity occurred in the OVDM by adjusting the coefficient of the leaders acceleration and can stabilize traffic flow more effectively.


2012 ◽  
Vol 241-244 ◽  
pp. 2064-2071
Author(s):  
Xi Min Liu ◽  
Shou Feng Lu

The aim of the paper is to study the effect of the weaving section length on traffic flow operating under the different traffic demand. The paper uses the optimal velocity car-following model and symmetric lane-changing rule to simulate traffic flow operating in the weaving section, and calculate the headway and average speed under the different weaving section length. The results show that there is a critical value for the weaving section length. When the weaving section length is less than a critical value, the space headway significantly increase and the speed significantly decrease. When the weaving section length is larger than the critical value, the increased weaving section length has little improvement of traffic flow performance. The study proposes the critical value for the weaving section length of city expressway. Lastly, the paper analyzed the trajectory of traffic flow in the phase space of speed and space headway.


2016 ◽  
Vol 30 (27) ◽  
pp. 1650327 ◽  
Author(s):  
Guanghan Peng ◽  
Weizhen Lu ◽  
Hongdi He

In this paper, a new car-following model is proposed by considering the global average optimal velocity difference effect on the basis of the full velocity difference (FVD) model. We investigate the influence of the global average optimal velocity difference on the stability of traffic flow by making use of linear stability analysis. It indicates that the stable region will be enlarged by taking the global average optimal velocity difference effect into account. Subsequently, the mKdV equation near the critical point and its kink–antikink soliton solution, which can describe the traffic jam transition, is derived from nonlinear analysis. Furthermore, numerical simulations confirm that the effect of the global average optimal velocity difference can efficiently improve the stability of traffic flow, which show that our new consideration should be taken into account to suppress the traffic congestion for car-following theory.


2017 ◽  
Vol 95 (11) ◽  
pp. 1096-1102 ◽  
Author(s):  
Y.F. Shi ◽  
L.C. Yang

The characteristics and the nonlinear phenomenon of traffic flow in the case of car-to-car communication (C2CC) are studied based on an improved coupled map car-following model. The model incorporates the modified optimal velocity function and appropriate control method. The conditions necessary to maintain the system stability and suppress traffic jams are obtained. To describe the car-following dynamics under C2CC accurately, different penetration rates of C2CC vehicles, such as 10%, 30%, and 60% are considered. The simulation results suggest that the improved model can effectively suppress traffic jams. The extent to which traffic jams are suppressed is increasing as the penetration rate increases. Moreover, the car-following stability has a noticeable improvement by analysing the time–space plots.


Author(s):  
Da Yang ◽  
Liling Zhu ◽  
Yun Pu

Although traffic flow has attracted a great amount of attention in past decades, few of the studies focused on heterogeneous traffic flow consisting of different types of drivers or vehicles. This paper attempts to investigate the model and stability analysis of the heterogeneous traffic flow, including drivers with different characteristics. The two critical characteristics of drivers, sensitivity and cautiousness, are taken into account, which produce four types of drivers: the sensitive and cautious driver (S-C), the sensitive and incautious driver (S-IC), the insensitive and cautious driver (IS-C), and the insensitive and incautious driver (IS-IC). The homogeneous optimal velocity car-following model is developed into a heterogeneous form to describe the heterogeneous traffic flow, including the four types of drivers. The stability criterion of the heterogeneous traffic flow is derived, which shows that the proportions of the four types of drivers and their stability functions only relating to model parameters are two critical factors to affect the stability. Numerical simulations are also conducted to verify the derived stability condition and further explore the influences of the driver characteristics on the heterogeneous traffic flow. The simulations reveal that the IS-IC drivers are always the most unstable drivers, the S-C drivers are always the most stable drivers, and the stability effects of the IS-C and the S-IC drivers depend on the stationary velocity. The simulations also indicate that a wider extent of the driver heterogeneity can attenuate the traffic wave.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650243 ◽  
Author(s):  
Guanghan Peng ◽  
Li Qing

In this paper, a new car-following model is proposed by considering the drivers’ aggressive characteristics. The stable condition and the modified Korteweg-de Vries (mKdV) equation are obtained by the linear stability analysis and nonlinear analysis, which show that the drivers’ aggressive characteristics can improve the stability of traffic flow. Furthermore, the numerical results show that the drivers’ aggressive characteristics increase the stable region of traffic flow and can reproduce the evolution and propagation of small perturbation.


Sign in / Sign up

Export Citation Format

Share Document