A health condition model for wind turbine monitoring through neural networks and proportional hazard models

Author(s):  
Peyman Mazidi ◽  
Mian Du ◽  
Lina Bertling Tjernberg ◽  
Miguel A Sanz Bobi

In this article, a parametric model for health condition monitoring of wind turbines is developed. The study is based on the assumption that a wind turbine’s health condition can be modeled through three features: rotor speed, gearbox temperature and generator winding temperature. At first, three neural network models are created to simulate normal behavior of each feature. Deviation signals are then defined and calculated as accumulated time-series of differences between neural network predictions and actual measurements. These cumulative signals carry health condition–related information. Next, through nonlinear regression technique, the signals are used to produce individual models for considered features, which mathematically have the form of proportional hazard models. Finally, they are combined to construct an overall parametric health condition model which partially represents health condition of the wind turbine. In addition, a dynamic threshold for the model is developed to facilitate and add more insight in performance monitoring aspect. The health condition monitoring of wind turbine model has capability of evaluating real-time and overall health condition of a wind turbine which can also be used with regard to maintenance in electricity generation in electric power systems. The model also has flexibility to overcome current challenges such as scalability and adaptability. The model is verified in illustrating changes in real-time and overall health condition with respect to considered anomalies by testing through actual and artificial data.

2021 ◽  
Vol 20 ◽  
pp. 153303382110049
Author(s):  
Tao Ran ◽  
ZhiJi Chen ◽  
LiWen Zhao ◽  
Wei Ran ◽  
JinYu Fan ◽  
...  

Background and Objective: Gastric cancer (GC) is a common tumor malignancy with high incidence and poor prognosis. Laminin is an indispensable component of basement membrane and extracellular matrix, which is responsible for bridging the internal and external environment of cells and transmitting signals. This study mainly explored the association of the LAMB1 expression with clinicopathological characteristics and prognosis in gastric cancer. Methods: The expression data and clinical information of gastric cancer patients were downloaded from The Cancer Genome Atlas (TCGA) and Asian Cancer Research Group (ACRG). And we analyzed the relationship between LAMB1 expression and clinical characteristics through R. CIBERSORTx was used to calculate the absolute score of immune cells in gastric tumor tissues. Then COX proportional hazard models and Kaplan-Meier curves were performed to evaluate the role of LAMB1 and its influence on prognosis in gastric cancer patients. Finally, GO and KEGG analysis were applied for LAMB1-related genes in gastric cancer, and PPI network was constructed in Cytoscape software. Results: In the TCGA cohort, patients with gastric cancer frequently generated LAMB1 gene copy number variation, but had little effect on mRNA expression. Both in the TCGA and ACRG cohorts, the mRNA expression of LAMB1 in gastric cancer tissues was higher than it in normal tissues. All patients were divided into high expression group and low expression group according to the median expression level of LAMB1. The elevated expression group obviously had more advanced cases and higher infiltration levels of M2 macrophages. COX proportional hazard models and Kaplan-Meier curves revealed that patients with enhanced expression of LAMB1 have a worse prognosis. GO/KEGG analysis showed that LAMB1-related genes were enriched in PI3K-Akt signaling pathway, focal adhesion, ECM-receptor interaction, etc. Conclusions: The high expression of LAMB1 in gastric cancer is related to the poor prognosis of patients, and it may be related to microenvironmental changes in tumors.


2018 ◽  
Vol 198 ◽  
pp. 04008
Author(s):  
Zhongshan Huang ◽  
Ling Tian ◽  
Dong Xiang ◽  
Sichao Liu ◽  
Yaozhong Wei

The traditional wind turbine fault monitoring is often based on a single monitoring signal without considering the overall correlation between signals. A global condition monitoring method based on Copula function and autoregressive neural network is proposed for this problem. Firstly, the Copula function was used to construct the binary joint probability density function of the power and wind speed in the fault-free state of the wind turbine. The function was used as the data fusion model to output the fusion data, and a fault-free condition monitoring model based on the auto-regressive neural network in the faultless state was established. The monitoring model makes a single-step prediction of wind speed and power, and statistical analysis of the residual values of the prediction determines whether the value is abnormal, and then establishes a fault warning mechanism. The experimental results show that this method can provide early warning and effectively realize the monitoring of wind turbine condition.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
A. Romero ◽  
Y. Lage ◽  
S. Soua ◽  
B. Wang ◽  
T.-H. Gan

Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM) and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD) method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hirokazu Honda ◽  
Miho Kimachi ◽  
Noriaki Kurita ◽  
Nobuhiko Joki ◽  
Masaomi Nangaku

Abstract Recent studies have reported that high mean corpuscular volume (MCV) might be associated with mortality in patients with advanced chronic kidney disease (CKD). However, the question of whether a high MCV confers a risk for mortality in Japanese patients remains unclear. We conducted a longitudinal analysis of a cohort of 8571 patients using data derived from the Japan Dialysis Outcomes and Practice Patterns Study (J-DOPPS) phases 1 to 5. Associations of all-cause mortality, vascular events, and hospitalization due to infection with baseline MCV were examined via Cox proportional hazard models. Non-linear relationships between MCV and these outcomes were examined using restricted cubic spline analyses. Associations between time-varying MCV and these outcomes were also examined as sensitivity analyses. Cox proportional hazard models showed a significant association of low MCV (< 90 fL), but not for high MCV (102 < fL), with a higher incidence of all-cause mortality and hospitalization due to infection compared with 94 ≤ MCV < 98 fL (reference). Cubic spline analysis indicated a graphically U-shaped association between baseline MCV and all-cause mortality (p for non-linearity p < 0.001). In conclusion, a low rather than high MCV might be associated with increased risk for all-cause mortality and hospitalization due to infection among Japanese patients on hemodialysis.


2020 ◽  
Vol 10 (3) ◽  
pp. 766 ◽  
Author(s):  
Alec Wright ◽  
Eero-Pekka Damskägg ◽  
Lauri Juvela ◽  
Vesa Välimäki

This article investigates the use of deep neural networks for black-box modelling of audio distortion circuits, such as guitar amplifiers and distortion pedals. Both a feedforward network, based on the WaveNet model, and a recurrent neural network model are compared. To determine a suitable hyperparameter configuration for the WaveNet, models of three popular audio distortion pedals were created: the Ibanez Tube Screamer, the Boss DS-1, and the Electro-Harmonix Big Muff Pi. It is also shown that three minutes of audio data is sufficient for training the neural network models. Real-time implementations of the neural networks were used to measure their computational load. To further validate the results, models of two valve amplifiers, the Blackstar HT-5 Metal and the Mesa Boogie 5:50 Plus, were created, and subjective tests were conducted. The listening test results show that the models of the first amplifier could be identified as different from the reference, but the sound quality of the best models was judged to be excellent. In the case of the second guitar amplifier, many listeners were unable to hear the difference between the reference signal and the signals produced with the two largest neural network models. This study demonstrates that the neural network models can convincingly emulate highly nonlinear audio distortion circuits, whilst running in real-time, with some models requiring only a relatively small amount of processing power to run on a modern desktop computer.


2009 ◽  
Vol 9 (4) ◽  
pp. 361-379
Author(s):  
Lu Zheng ◽  
Marvin Zelen

This paper proposes a new distribution-free statistical method for testing hypotheses about covariates for survival data having simultaneously right-, left- and interval-censored survival times. The new test is motivated by the analogue between urn sampling and the Cox’s proportional hazard models. Investigations of the significance levels and power as a function of the proportion of interval-censored observations and interval length show that the test performs well for most censoring situations encountered in practice. Simulation results also suggest that there is negligible loss of power in the practical situation in which the mean interval length for interval-censored observations is less than the mean survival time. This holds even with heavy interval censoring. Comparison with the widely used Mantel’s method for comparing two groups shows that the power of the new method appears to be superior. Furthermore, the test is relatively simple to carry out and generalizes to comparing k populations as well as the testing of general linear hypothesis for arbitrary covariates.


2013 ◽  
Vol 385-386 ◽  
pp. 981-984
Author(s):  
Jian Guo Cui ◽  
Can Wu ◽  
Li Ying Jiang ◽  
Yi Wen Qi ◽  
Guo Qiang Li

Because of the complex structure, poor working conditions and lots of fault modes of aeroengine , it is necessary to monitor the operational status, accurate localization of aeroengine fault and identify fault to improve the safety and reliability of aircraft. Based on consistency fusion, this paper uses probabilistic neural network to monitor health condition of aeroengine and puts forward a combined method of health condition monitoring based on the consistency fusion and the neural network. The results of test show that this method can quickly monitor the health condition of the aeroengine and has certain reference value for other mechanical equipments condition monitoring.


Sign in / Sign up

Export Citation Format

Share Document