scholarly journals Load transfer through the radiocarpal joint and the effects of partial wrist arthrodesis on carpal bone behaviour: a finite element study

2012 ◽  
Vol 37 (9) ◽  
pp. 871-878 ◽  
Author(s):  
M. K. Gíslason ◽  
B. Stansfield ◽  
M. Bransby-Zachary ◽  
T. Hems ◽  
D. H. Nash

A finite element model of the wrist was developed to simulate mechanical changes that occur after surgery of the wrist. After partial arthrodesis, the wrist will experience altered force transmission during loading. Three different types of partial arthrodesis were investigated — radiolunate, radioscaphoid, and radioscapholunate — and compared with the healthy untreated wrist. The results showed that the compressive forces on the radiocarpal joint decreased compared with the untreated wrist with both radiolunate and radioscaphoid fusions. The load transmission through the midcarpal joints varied depending on arthrodesis type. The forces in the extrinsic ligaments decreased with the fusion, most noticeably in the dorsal radiotriquetral ligament, but increased in the dorsal scaphotriquetral ligament. From the results of the study it can be concluded that the radioscapholunate fusion shows the most biomechanically similar behaviour out of the three fusion types compared with the healthy wrist. The modelling described in this paper may be a useful approach to pre-operative planning in wrist surgery.

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1077 ◽  
Author(s):  
Dasari ◽  
Brabazon ◽  
Naher

Estimating the effect of graphene oxide (GO) reinforcement on overall properties of aluminum (Al) matrix composites experimentally is time-consuming and involves high manufacturing costs and sophisticated characterizations. An attempt was made in this paper to predict the mechanical properties of GO/Al composites by using a micromechanical finite element approach. The materials used for prediction included monolayer and multilayer GO layers distributed uniformly on the spherical Al matrix particles. The estimation was done by assuming that a representative volumetric element (RVE) represents the composite structure, and reinforcement and matrix were modeled as continuum. The load transfer between the GO reinforcement and Al was modeled using joint elements that connect the two materials. The numerical results from the finite element model were compared with Voigt model and experimental results from the GO/Al composites produced at optimized process parameters. A good agreement of numerical results with the theoretical models was noted. The load-bearing capacity of the Al matrix increased with the addition of GO layers, however, Young’s modulus of the GO/Al composites decreased with an increase in the number of layers from monolayer to 5 layers. The numerical results presented in this paper have demonstrated the applicability of the current approach for predicting the overall properties of composites.


Author(s):  
Pablo Vasquez ◽  
Natalia Nun˜o

A personalized 3D model of the proximal femur is reconstructed from medical CT-scan images. The mechanical properties of the cortical and spongious bones are extracted from the medical images. A finite element model of a personalized total hip arthroplasty is developed to investigate the effect of residual stresses due to cement curing in the load transfer during simplified heel strike.


Author(s):  
Hongyan Ding ◽  
Zuntao Feng ◽  
Puyang Zhang ◽  
Conghuan Le

Abstract The onshore pre-fabrication technology for composite bucket foundations takes “prefabrication-assembly-lifting” as the core concept. The practice of pre-fabrication of upper and lower structures is prefabricated respectively. In the research of hoisting engineering technology, combined with the structural form and construction requirements of composite bucket foundation, the assembly scheme of the upper prestressed concrete transition section and the lower steel bucket and the hoisting scheme of integral foundation with compartments were designed. The finite element model in the lifting process of composite bucket foundation was established by the large-scale general finite element analysis software ABAQUS. For the optimization analysis of the lifting point arrangement during hoisting process, the number, position and arrangement form of lifting points are simulated and analyzed. The results show that the maximum value of the principal stress of the concrete transition section structure appears in the assembly stage with the lower steel bucket, and the structure checking calculation should be carried out as the most unfavorable lifting condition in construction; the peak point of structural stress is at the junction of girder and secondary beams and inner ring beams of concrete roof, which belongs to the weak position of force transmission. In construction, it should be paid attention to as the key part of monitoring to ensure composite bucket foundation is under reasonable stress and the stability in the lifting process. The research results can provide guidance and reference for the future batch production and standardization production construction for composite bucket foundations.


2012 ◽  
Vol 178-181 ◽  
pp. 1152-1155 ◽  
Author(s):  
Luo Ke Li ◽  
Yun Liang Li ◽  
Yi Qiu Tan ◽  
Zhong Jun Xue

In a jointed plain concrete pavements, the dowel bar system are used to provide lateral load transfer across transverse joint. Corrosion of commonly used steel dowel in engineering practice reduces their service life and costs considerable maintenance and repair spending for concrete pavements. The objective of this study focus primarily on the performance of none eroded GFRP dowel on LTE( load transfer efficiency) with the help of a three-dimensional finite-element model. The amount of LTE can be obtained directly from comparing the maximum deflection of the concrete slab and the level tensile stress under the concrete slab. According to the finite element results, the larger-diameter GFRP dowel are found to perform the best in this study.


Author(s):  
Xia Liu ◽  
Tejaswy Potluri ◽  
Nikhil Kulkarni ◽  
Suresh Chinthakunta ◽  
Vijay Goel ◽  
...  

Chiropractors routinely manipulate cervical spines for treating neck pain and headaches. However, limited quantitative information is available about the mechanical response (e.g., displacement, ligament stress, load transfer) during a cervical spinal manipulation.


2010 ◽  
Vol 118-120 ◽  
pp. 147-150
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Yong Gao ◽  
Wen Lin Liu ◽  
Zhong Hu Jia

Three-dimensional finite element model of a cracked bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of load transfer were compared with results from finite element analysis. The results show that three-dimensional finite element model of cracked bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of hole mod and crack on the load transfer behaviour of single lap bolted joints. The results show that hole mode has big effect on load transfer of cracked bolted joint. In the whole progress of crack growth, the load transfer through bolt 1 decrease, and almost all of the load duduction of bolt 1 transfer into blot 2 rather than into bolt 3.


Author(s):  
Scott L. Bevill ◽  
Paul L. Briant ◽  
Thomas P. Andriacchi

Mechanical loading of chondrocytes in isolation [1] and of articular cartilage in culture [2] has been reported to be a potent regulator of chondrocyte metabolism. Experimental studies have related tissue-level and cell-level strains in mechanically loaded cartilage explants [3], but cannot be readily extended to address more physiologic loading cases. Numerical models, which might address this need, have primarily been axisymmetric [4, 5] or two-dimensional [6] and have idealized chondrocyte geometry. Given the complexity of the mechanism of the load transfer between the tissue and cell, however, there remains a lack of information regarding the in vivo level of cell stresses and strains. Thus, the purpose of this study was to develop a multiscale experimental/numerical approach to calibrate a three-dimensional finite element (FE) model of a chondrocyte based on experimentally derived chondrocyte morphology and deformation data. The method was than applied to determine the modulus of a chondrocyte located in the superficial zone.


2014 ◽  
Vol 638-640 ◽  
pp. 675-679 ◽  
Author(s):  
Huan Sheng Mu ◽  
Ling Gao

This paper presents a non-probabilistic method for reliability analysis of cement mixing composite foundations. First, the load transfer mechanism of composite foundations is described. Then a three-dimensional finite element model of cement mixing composite foundation under embankment is built. The settlement of subgrade is analyzed. Finally, a non-probabilistic reliability method is used to investigate the settlement reliability. The results show that the cement mixing composite foundation can significantly improve the compressibility of soft soil.


2020 ◽  
Vol 10 (17) ◽  
pp. 5973
Author(s):  
Paul Didier ◽  
Boris Piotrowski ◽  
Gael Le Coz ◽  
David Joseph ◽  
Pierre Bravetti ◽  
...  

The present work proposes a parametric finite element model of the general case of a single loaded dental implant. The objective is to estimate and quantify the main effects of several parameters on stress distribution and load transfer between a loaded dental implant and its surrounding bone. The interactions between them are particularly investigated. Seven parameters (implant design and material) were considered as input variables to build the parametric finite element model: the implant diameter, length, taper and angle of inclination, Young’s modulus, the thickness of the cortical bone and Young’s modulus of the cancellous bone. All parameter combinations were tested with a full factorial design for a total of 512 models. Two biomechanical responses were identified to highlight the main effects of the full factorial design and first-order interaction between parameters: peri-implant bone stress and load transfer between bones and implants. The description of the two responses using the identified coefficients then makes it possible to optimize the implant configuration in a case study with type IV. The influence of the seven considered parameters was quantified, and objective information was given to support surgeon choices for implant design and placement. The implant diameter and Young’s modulus and the cortical thickness were the most influential parameters on the two responses. The importance of a low Young’s modulus alloy was highlighted to reduce the stress shielding between implants and the surrounding bone. This method allows obtaining optimized configurations for several case studies with a custom-made design implant.


Sign in / Sign up

Export Citation Format

Share Document