scholarly journals Anemonin improves intestinal barrier restoration and influences TGF-β1 and EGFR signaling pathways in LPS-challenged piglets

2016 ◽  
Vol 22 (5) ◽  
pp. 344-352 ◽  
Author(s):  
Kan Xiao ◽  
Shu Ting Cao ◽  
Le Fei Jiao ◽  
Fang Hui Lin ◽  
Li Wang ◽  
...  

The present study was aimed at investigating whether dietary anemonin could alleviate LPS-induced intestinal injury and improve intestinal barrier restoration in a piglet model. Eighteen 35-d-old pigs were randomly assigned to three treatment groups (control, LPS and LPS+anemonin). The control and LPS groups were fed a basal diet, and the LPS + anemonin group received the basal diet + 100 mg anemonin/kg diet. After 21 d of feeding, the LPS- and anemonin-treated piglets received i.p. administration of LPS; the control group received saline. At 4 h post-injection, jejunum samples were collected. The results showed that supplemental anemonin increased villus height and transepithelial electrical resistance, and decreased crypt depth and paracellular flux of dextran (4 kDa) compared with the LPS group. Moreover, anemonin increased tight junction claudin-1, occludin and ZO-1 expression in the jejunal mucosa, compared with LPS group. Anemonin also decreased TNF-α, IL-6, IL-8 and IL-1β mRNA expression. Supplementation with anemonin also increased TGF-β1 mRNA and protein expression, Smad4 and Smad7 mRNA expressions, and epidermal growth factor and epidermal growth factor receptor (EGFR) mRNA expression in the jejunal mucosa. These findings suggest that dietary anemonin attenuates LPS-induced intestinal injury by improving mucosa restoration, alleviating intestinal inflammation and influencing TGF-β1 canonical Smads and EGFR signaling pathways.

mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Meaghan H. Hancock ◽  
Jennifer Mitchell ◽  
Felicia D. Goodrum ◽  
Jay A. Nelson

ABSTRACT Regulation of epidermal growth factor (EGF) receptor (EGFR) signaling is critical for the replication of human cytomegalovirus (HCMV) as well as latency and reactivation in CD34+ hematopoietic progenitor cells. HCMV microRNAs (miRNAs) provide a means to modulate the signaling activated by EGF through targeting components of the EGFR signaling pathways. Here, we demonstrate that HCMV miR-US5-2 directly downregulates the critical EGFR adaptor protein GAB1 that mediates activation and sustained signaling through the phosphatidylinositol 3-kinase (PI3K) and MEK/extracellular signal-regulated kinase (ERK) pathways and cellular proliferation in response to EGF. Expression of HCMV UL138 is regulated by the transcription factor early growth response gene 1 (EGR1) downstream of EGFR-induced MEK/ERK signaling. We show that by targeting GAB1 and attenuating MEK/ERK signaling, miR-US5-2 indirectly regulates EGR1 and UL138 expression, which implicates the miRNA in critical regulation of HCMV latency. IMPORTANCE Human cytomegalovirus (HCMV) causes significant disease in immunocompromised individuals, including transplant patients. HCMV establishes latency in hematopoietic stem cells in the bone marrow. The mechanisms governing latency and reactivation of viral replication are complex and not fully understood. HCMV-encoded miRNAs are small regulatory RNAs that reduce protein expression. In this study, we found that the HCMV miRNA miR-US5-2 targets the epidermal growth factor receptor (EGFR) adaptor protein GAB1 which directly affects downstream cellular signaling pathways activated by EGF. Consequently, miR-US5-2 blocks the EGF-mediated proliferation of human fibroblasts. Early growth response gene 1 (EGR1) is a transcription factor activated by EGFR signaling that regulates expression of HCMV UL138. We show that miR-US5-2 regulates UL138 expression through GAB1-mediated downregulation of the signaling pathways that lead to EGR1 expression. These data suggest that miR-US5-2, through downregulation of GAB1, could play a critical role during reactivation from latency by reducing proliferation and UL138 expression.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Jun Yu ◽  
Qianwen Zheng ◽  
Zhiran Li ◽  
Yunhao Wu ◽  
Yangbo Fu ◽  
...  

AbstractSpermatogonia transit-amplifying (TA) divisions are crucial for the differentiation of germline stem cell daughters. However, the underlying mechanism is largely unknown. In the present study, we demonstrated that CG6015 was essential for spermatogonia TA-divisions and elongated spermatozoon development in Drosophila melanogaster. Spermatogonia deficient in CG6015 inhibited germline differentiation leading to the accumulation of undifferentiated cell populations. Transcriptome profiling using RNA sequencing indicated that CG6015 was involved in spermatogenesis, spermatid differentiation, and metabolic processes. Gene Set Enrichment Analysis (GSEA) revealed the relationship between CG6015 and the epidermal growth factor receptor (EGFR) signaling pathway. Unexpectedly, we discovered that phosphorylated extracellular regulated kinase (dpERK) signals were activated in germline stem cell (GSC)-like cells after reduction of CG6015 in spermatogonia. Moreover, Downstream of raf1 (Dsor1), a key downstream target of EGFR, mimicked the phenotype of CG6015, and germline dpERK signals were activated in spermatogonia of Dsor1 RNAi testes. Together, these findings revealed a potential regulatory mechanism of CG6015 via EGFR signaling during spermatogonia TA-divisions in Drosophila testes.


2002 ◽  
Vol 282 (1) ◽  
pp. G156-G164 ◽  
Author(s):  
Bohuslav Dvorak ◽  
Melissa D. Halpern ◽  
Hana Holubec ◽  
Catherine S. Williams ◽  
Debra L. McWilliam ◽  
...  

Necrotizing enterocolitis (NEC) is the most common gastrointestinal disease of prematurely born infants. Maternal milk plays an important protective role against NEC development and is the major source of epidermal growth factor (EGF) for neonates. The aim of this study was to examine the effect of orally administered EGF on the incidence of NEC in a neonatal rat model. Newborn rats were artificially fed either with growth factor-free rat milk substitute (RMS) or RMS supplemented with 500 ng/ml of EGF (RMS+EGF). Experimental NEC was induced by exposure to asphyxia and cold stress. Development of NEC was evaluated by gross and histological scoring of damage in the ileum. Ileal EGF receptor (EGF-R), EGF, and transforming growth factor-α mRNA expression was assessed by RT competitive-PCR, and the EGF-R was localized by immunohistochemistry. EGF supplementation of formula reduced the incidence and severity of NEC in rats (13/16 RMS vs. 4/13 RMS+EGF). Ileal EGF-R mRNA expression was markedly increased in the RMS group compared with RMS+EGF. Enhanced EGF-R expression in the RMS group was localized predominantly in the epithelial cells of injured ileum. These data suggest a new potential therapeutic approach for the prevention and treatment of NEC.


Sign in / Sign up

Export Citation Format

Share Document