scholarly journals Identification of miRNAs That Mediate Protective Functions of Anti-Cancer Drugs During White Matter Ischemic Injury

ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110422
Author(s):  
Selva Baltan ◽  
Ursula S. Sandau ◽  
Sylvain Brunet ◽  
Chinthasagar Bastian ◽  
Ajai Tripathi ◽  
...  

We have previously shown that two anti-cancer drugs, CX-4945 and MS-275, protect and preserve white matter (WM) architecture and improve functional recovery in a model of WM ischemic injury. While both compounds promote recovery, CX-4945 is a selective Casein kinase 2 (CK2) inhibitor and MS-275 is a selective Class I histone deacetylase (HDAC) inhibitor. Alterations in microRNAs (miRNAs) mediate some of the protective actions of these drugs. In this study, we aimed to (1) identify miRNAs expressed in mouse optic nerves (MONs); (2) determine which miRNAs are regulated by oxygen glucose deprivation (OGD); and (3) determine the effects of CX-4945 and MS-275 treatment on miRNA expression. RNA isolated from MONs from control and OGD-treated animals with and without CX-4945 or MS-275 treatment were quantified using NanoString nCounter® miRNA expression profiling. Comparative analysis of experimental groups revealed that 12 miRNAs were expressed at high levels in MONs. OGD upregulated five miRNAs (miR-1959, miR-501-3p, miR-146b, miR-201, and miR-335-3p) and downregulated two miRNAs (miR-1937a and miR-1937b) compared to controls. OGD with CX-4945 upregulated miR-1937a and miR-1937b, and downregulated miR-501-3p, miR-200a, miR-1959, and miR-654-3p compared to OGD alone. OGD with MS-275 upregulated miR-2134, miR-2141, miR-2133, miR-34b-5p, miR-153, miR-487b, miR-376b, and downregulated miR-717, miR-190, miR-27a, miR-1959, miR-200a, miR-501-3p, and miR-200c compared to OGD alone. Interestingly, miR-501-3p and miR-1959 were the only miRNAs upregulated by OGD, and downregulated by OGD plus CX-4945 and MS-275. Therefore, we suggest that protective functions of CX-4945 or MS-275 against WM injury maybe mediated, in part, through miRNA expression.

2007 ◽  
Vol 27 (9) ◽  
pp. 1540-1552 ◽  
Author(s):  
Selva Baltan Tekkök ◽  
ZuCheng Ye ◽  
Bruce R Ransom

Axonal injury and dysfunction in white matter (WM) are caused by many neurologic diseases including ischemia. We characterized ischemic injury and the role of glutamate-mediated excitotoxicity in a purely myelinated WM tract, the mouse optic nerve (MON). For the first time, excitotoxic WM injury was directly correlated with glutamate release. Oxygen and glucose deprivation (OGD) caused duration-dependent loss of axon function in optic nerves from young adult mice. Protection of axon function required blockade of both α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and kainate receptors, or removal of extracellular Ca2+. Blockade of N-methyl-D-aspartate receptors did not preserve axon function. Curiously, even extended periods of direct exposure to glutamate or kainate or AMPA failed to induce axon dysfunction. Brief periods of OGD, however, caused glutamate receptor agonist exposure to become toxic, suggesting that ionic disruption enabled excitotoxic injury. Glutamate release, directly measured using quantitative high-performance liquid chromatography, occurred late during a 60-mins period of OGD and was due to reversal of the glutamate transporter. Brief periods of OGD (i.e., 15 mins) did not cause glutamate release and produced minimal injury. These results suggested that toxic glutamate accumulation during OGD followed the initial ionic changes mediating early loss of excitability. The onset of glutamate release was an important threshold event for irreversible ischemic injury. Regional differences appear to exist in the specific glutamate receptors that mediate WM ischemic injury. Therapy for ischemic WM injury must be designed accordingly.


BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 264 ◽  
Author(s):  
Ying Lan ◽  
Ning Su ◽  
Yi Shen ◽  
Rongzhi Zhang ◽  
Fuqing Wu ◽  
...  

2021 ◽  
Author(s):  
M. McCabe ◽  
C. Penny ◽  
P. Magangane ◽  
S. Mirza ◽  
Y. Perner

Abstract Introduction: A large proportion of indigenous African (IA) colorectal cancer (CRC) patients in South Africa are young (<50years), with no unique histopathological or molecular characteristics. Anatomical site as well as microsatellite instability (MSI) status have shown to be associated with different clinicopathological and molecular features. This study aimed to ascertain key histopathological and miRNA expression patterns in microsatellite stable (MSS) and low-frequency MSI (MSI-L) patients, to provide insight into the mechanism of the disease. Methods: A retrospective cohort (2011-2015) of MSS/MSI-L CRC patient samples diagnosed at Charlotte Maxeke Johannesburg Academic Hospital was analyzed. Samples were categorized by site [Right colon cancer (RCC) versus left (LCC)], ethnicity [IA versus other ethnic groups (OEG)] and MSI status (MSI-L vs MSS). T-test, Fischer’s exact and Chi-square tests were conducted. Additional miRNA expression profiling was performed on IA patient samples. Results: IA patients with LCC demonstrated an increased prevalence in males, sigmoid colon, signet-ring-cell morphology, MSI-L with BAT25/26 marker instability and advanced disease association. MiRNA expression profiling revealed unique clustering, with dysregulation of let-7 and miRNA-125. Conclusion: This study revealed distinct histopathological features for LCC, and suggests BAT25/26, miRNAs let-7a-5p and miRNA-125a/b-5p as negative prognostic markers in African CRC patients. Larger confirmatory studies are recommended.


2016 ◽  
Vol 252 ◽  
pp. e206-e207
Author(s):  
S. Manzini ◽  
M. Busnelli ◽  
M. Chiara ◽  
C. Parolini ◽  
F. Dellera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document