scholarly journals Development, in vitro and in vivo evaluations of novel lipid drug delivery system of Newbouldia laevis (P. Beauv.)

2016 ◽  
Vol 3 ◽  
pp. 184954351667344
Author(s):  
Chukwuebuka Umeyor ◽  
Emmanuel Anaka ◽  
Franklin Kenechukwu ◽  
Chinazom Agbo ◽  
Anthony Attama

Newbouldia laevis (P. Beauv.) is a tropical rainforest plant used in traditional folk medicine for the treatment of malaria, cough, joint pains, stomach ache, oedema and inflammation. The main thrust of this research work was to study the analgesic/anti-nociceptive properties of N. laevis-loaded solid lipid microdispersions. N. laevis leaves were extracted using ethanol, and the extract was formulated into solid lipid microdispersions using lipid matrix comprising a rational blend of Precirol® ATO 5 and Softisan® 154. Characterization of the solid lipid microdispersions include determination of morphology, particle size, pH, thermal property, encapsulation efficiency percentage and analgesic/anti-nociceptive property. The results obtained showed that the particles were spherical with sizes ranging from 40 µm to 125 µm. The solid lipid microdispersions maintained a stable pH within the acidic region of 5–6 with insignificant variations ( p > 0.05) over a period of 90 days. Thermal analysis showed that N. laevis was entrapped in the lipid matrix used for the formulations. Solid lipid microdispersions recorded a maximum encapsulation efficiency up to 88.1%. N. laevis-loaded solid lipid microdispersions also produced good analgesic/anti-nociceptive property comparable with the standard diclofenac potassium. N. laevis-loaded solid lipid microdispersions showed good analgesic/anti-nociceptive effect and could be used in the treatment and management of pain.

2016 ◽  
Vol 36 ◽  
pp. 55-61 ◽  
Author(s):  
Alok Mahor ◽  
Sunil Kumar Prajapati ◽  
Amita Verma ◽  
Rishikesh Gupta ◽  
Thakur Raghu Raj Singh ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 126
Author(s):  
Chunrui Ma ◽  
Xiao Li ◽  
Kun Yang ◽  
Shangyong Li

Chitooligosaccharide (COS) has been recognized to exhibit efficient anti-oxidant activity. Enzymatic hydrolysis using chitosanases can retain all the amino and hydroxyl groups of chitosan, which are necessary for its activity. In this study, a new chitosanase encoding gene, csnQ, was cloned from the marine Bacillus sp. Q1098 and expressed in Escherichia coli. The recombinant chitosanase, CsnQ, showed maximal activity at pH 5.31 and 60 °C. Determination of CsnQ pH-stability showed that CsnQ could retain more than 50% of its activity over a wide pH, from 3.60 to 9.80. CsnQ is an endo-type chitosanase, yielding chitodisaccharide as the main product. Additionally, in vitro and in vivo analyses indicated that chitodisaccharide possesses much more effective anti-oxidant activity than glucosamine and low molecular weight chitosan (LMW-CS) (~5 kDa). Notably, to our knowledge, this is the first evidence that chitodisaccharide is the minimal COS fragment required for free radical scavenging.


2013 ◽  
Vol 541 ◽  
pp. 97-113 ◽  
Author(s):  
Rossella Bedini ◽  
Deborah Meleo ◽  
Raffaella Pecci

After a short introduction to bone substitute biomaterials and X-ray microtomography, this article describes a research work carried out for in-vitro characterization of bone substitute biomaterials as well as for in-vivo investigation of human bone grafted with biomaterials. Three different bone substitute biomaterials have been analyzed in-vitro by means of 3D microtomographic technique, while human bone samples grafted with bone substitute biomaterials are investigated by 3D microtomography and histological techniques. 3D images of bone substitutes and human bone samples with biomaterials have been obtained, together with morphometric parameters, by microtomography . 2D histological images have also been obtained by traditional technique only for human bone samples with biomaterials. Compared to traditional histological analysis, 3D microtomography shows better results for investigating bone tissue and bone substitute biomaterial, and in a short time. Nevertheless, histological analysis remains the best technique for the observation of soft tissue and blood vessels.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (08) ◽  
pp. 38-48
Author(s):  
S. V Shinde ◽  
S Nikam ◽  
P Raut ◽  
M. K. Ghag ◽  

In the present research work, celecoxib (CXB) loaded solid lipid nanoparticles (SLNs) were prepared using the probe sonication method, wherein Glyceryl monostearate and Tween 80 were used as solid lipid and surfactant, respectively. To obtain the statistically optimized batch, 32 factorial design was applied. The optimized batch was characterized physicochemically and evaluated through DSC, SEM and XRD studies. The mean particle size of the optimized batch was found to be 135.41± 0.24 nm with a mean % entrapment efficiency of 80 ± 1.69%. The optimized batch was further lyophilized and dispersed into 1% w/v Carbopol 934P to form a gel. Prepared gel was further evaluated for in vitro drug release, occlusivity, ex vivo permeability, local toxicity, in vivo anti-inflammatory activity and accelerated stability study. The study resulted in stable, safe and prolonged anti-inflammatory activity with quick onset of action. Hence, celecoxib loaded solid lipid nanoparticles can be considered as promising alternative to conventional topical systems.


Development ◽  
1992 ◽  
Vol 114 (4) ◽  
pp. 947-957 ◽  
Author(s):  
D. Altshuler ◽  
C. Cepko

The retina is a relatively simple and well-characterized CNS structure in which cell-cell interactions have been hypothesized to influence cell type determination. By manipulating cell density in serum-free cultures we show that rat rod photoreceptor development requires a diffusible activity produced by neonatal retinal cells. This effect is not mediated by changes in cell survival or mitosis. Production of the rod promoting activity varies with developmental stage and is temporally correlated with the timing of rod generation in vivo. In low density cultures, which do not support rod development, an increased fraction of cells stain with an antibody specific for another retinal neuron, the bipolar cell. Thus, the diffusible rod promoting activity may influence cell fate determination, and not only terminal differentiation. These results provide an approach for the molecular characterization of developmentally important signals in the vertebrate retina.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Amanda de Fraga Dias ◽  
Danieli Rosane Dallemole ◽  
Franciele Aline Bruinsmann ◽  
Luiz Fernando Lopes Silva ◽  
Olga Cruz-López ◽  
...  

Aim: To develop and characterize bozepinib-loaded lipid-core nanocapsules (BZP-LNC+) as a potential treatment for glioblastoma (GBM). Methods: Characterization of nanocapsules was performed by diameter, polydispersity index, zeta potential, pH and encapsulation efficiency. GBM cell viability, cell cycle and Annexin/PI were evaluated after BZP-LNC+ treatment. Synergism between BZP-LNC+ and temozolomide (TMZ) was performed by CompuSyn software and confirmed in vitro and in vivo. Results: BZP-LNC+ showed adequate particle sizes, positive zeta potential, narrow size distribution and high encapsulation efficiency. BZP-LNC+ reduces GBM growth by inducing apoptosis. BZP-LNC+ and TMZ showed synergistic effect in vitro and reduced the in vivo glioma growth by approximately 81%. Conclusion: The present study provides proof-of-principle insights for the combination of these drugs for GBM treatment.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 231 ◽  
Author(s):  
Raquel de M. Barbosa ◽  
Ligia Ribeiro ◽  
Bruna Casadei ◽  
Camila da Silva ◽  
Viviane Queiróz ◽  
...  

Dibucaine (DBC) is among the more potent long-acting local anesthetics (LA), and it is also one of the most toxic. Over the last decades, solid lipid nanoparticles (SLN) have been developed as promising carriers for drug delivery. In this study, SLN formulations were prepared with the aim of prolonging DBC release and reducing its toxicity. To this end, SLN composed of two different lipid matrices and prepared by two different hot-emulsion techniques (high-pressure procedure and sonication) were compared. The colloidal stability of the SLN formulations was tracked in terms of particle size (nm), polydispersity index (PDI), and zeta potential (mV) for 240 days at 4 °C; the DBC encapsulation efficiency was determined by the ultrafiltration/centrifugation method. The formulations were characterized by differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), and release kinetic experiments. Finally, the in vitro cytotoxicity against 3T3 fibroblast and HaCaT cells was determined, and the in vivo analgesic action was assessed using the tail flick test in rats. Both of the homogenization procedures were found suitable to produce particles in the 200 nm range, with good shelf stability (240 days) and high DBC encapsulation efficiency (~72–89%). DSC results disclosed structural information on the nanoparticles, such as the lower crystallinity of the lipid core vs. the bulk lipid. EPR measurements provided evidence of DBC partitioning in both SLNs. In vitro (cytotoxicity) and in vivo (tail flick) experiments revealed that the encapsulation of DBC into nanoparticles reduces its intrinsic cytotoxicity and prolongs the anesthetic effect, respectively. These results show that the SLNs produced are safe and have great potential to extend the applications of dibucaine by enhancing its bioavailability.


2007 ◽  
Vol 27 (1-3) ◽  
pp. 151-163 ◽  
Author(s):  
M. C. Lara ◽  
M. L. Valentino ◽  
J. Torres-Torronteras ◽  
M. Hirano ◽  
R. Martí

Over the last 15 years, important research has expanded our knowledge of the clinical, molecular genetic, and biochemical features of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). The characterization of mitochondrial involvement in this disorder and the seminal determination of its genetic cause, have opened new possibilities for more detailed and deeper studies on the pathomechanisms in this progressive and fatal disease. It has been established that MNGIE is caused by mutations in the gene encoding thymidine phosphorylase (TP), which lead to absolute or nearly complete loss of its catalytic activity, producing systemic accumulations of its substrates, thymidine (dThd) and deoxyuridine (dUrd). Findings obtained from in vitro and in vivo studies indicate that the biochemical imbalances specifically impair mitochondrial DNA (mtDNA) replication, repair, or both leading to mitochondrial dysfunction. We have proposed that therapy for MNGIE should be aimed at reducing the concentrations of these toxic nucleosides to normal or nearly normal levels. The first treatment, allogeneic stem-cell transplantation (alloSCT) reported in 2006, produced a nearly full biochemical correction of the dThd and dUrd imbalances in blood. Clinical follow-up of this and other patients receiving alloSCT is necessary to determine whether this and other therapies based on a permanent restoration of TP will be effective treatment for MNGIE.


Sign in / Sign up

Export Citation Format

Share Document