photoreceptor development
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 17)

H-INDEX

27
(FIVE YEARS 1)

Author(s):  
Yohei Tomita ◽  
Chenxi Qiu ◽  
Edward Bull ◽  
William Allen ◽  
Yumi Kotoda ◽  
...  

AbstractPhotoreceptor degeneration caused by genetic defects leads to retinitis pigmentosa, a rare disease typically diagnosed in adolescents and young adults. In most cases, rod loss occurs first, followed by cone loss as well as altered function in cells connected to photoreceptors directly or indirectly. There remains a gap in our understanding of retinal cellular responses to photoreceptor abnormalities. Here, we utilized single-cell transcriptomics to investigate cellular responses in each major retinal cell type in retinitis pigmentosa model (P23H) mice vs. wild-type littermate mice. We found a significant decrease in the expression of genes associated with phototransduction, the inner/outer segment, photoreceptor cell cilium, and photoreceptor development in both rod and cone clusters, in line with the structural changes seen with immunohistochemistry. Accompanying this loss was a significant decrease in the expression of genes involved in metabolic pathways and energy production in both rods and cones. We found that in the Müller glia/astrocyte cluster, there was a significant increase in gene expression in pathways involving photoreceptor maintenance, while concomitant decreases were observed in rods and cones. Additionally, the expression of genes involved in mitochondrial localization and transport was increased in the Müller glia/astrocyte cluster. The Müller glial compensatory increase in the expression of genes downregulated in photoreceptors suggests that Müller glia adapt their transcriptome to support photoreceptors and could be thought of as general therapeutic targets to protect against retinal degeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yohey Ogawa ◽  
Joseph C. Corbo

AbstractVertebrate photoreceptors are categorized into two broad classes, rods and cones, responsible for dim- and bright-light vision, respectively. While many molecular features that distinguish rods and cones are known, gene expression differences among cone subtypes remain poorly understood. Teleost fishes are renowned for the diversity of their photoreceptor systems. Here, we used single-cell RNA-seq to profile adult photoreceptors in zebrafish, a teleost. We found that in addition to the four canonical zebrafish cone types, there exist subpopulations of green and red cones (previously shown to be located in the ventral retina) that express red-shifted opsin paralogs (opn1mw4 or opn1lw1) as well as a unique combination of cone phototransduction genes. Furthermore, the expression of many paralogous phototransduction genes is partitioned among cone subtypes, analogous to the partitioning of the phototransduction paralogs between rods and cones seen across vertebrates. The partitioned cone-gene pairs arose via the teleost-specific whole-genome duplication or later clade-specific gene duplications. We also discovered that cone subtypes express distinct transcriptional regulators, including many factors not previously implicated in photoreceptor development or differentiation. Overall, our work suggests that partitioning of paralogous gene expression via the action of differentially expressed transcriptional regulators enables diversification of cone subtypes in teleosts.


2021 ◽  
Author(s):  
Olivier Mercey ◽  
Corinne Kostic ◽  
Eloïse Bertiaux ◽  
Alexia Giroud ◽  
Yashar Sadian ◽  
...  

AbstractRetinal degeneration is a leading cause of human blindness due to progressive loss of ciliated photoreceptors cells. While this degradation can be associated with cohesion defects of the microtubule-based connecting cilium (CC) structure, the underlying mechanism is not understood. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC-inner scaffold (CC-IS) containing POC5, CENTRIN and FAM161A. Monitoring CC-IS assembly during photoreceptor development in mouse reveals that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Consistently, Fam161a mutations lead to a specific CC-IS loss and trigger microtubule doublets spreading, prior to outer segment collapse and photoreceptor degeneration, providing a molecular mechanism for retinitis pigmentosa disease.One Sentence SummaryThe connecting cilium inner scaffold acts as a structural zipper granting photoreceptor integrity.


2021 ◽  
Vol 22 (16) ◽  
pp. 8357
Author(s):  
Meng Zhao ◽  
Guang-Hua Peng

Photoreceptors are critical components of the retina and play a role in the first step of the conversion of light to electric signals. With the discovery of the intrinsically photosensitive retinal ganglion cells, which regulate non-image-forming visual processes, our knowledge of the photosensitive cell family in the retina has deepened. Photoreceptor development is regulated by specific genes and proteins and involves a series of molecular processes including DNA transcription, post-transcriptional modification, protein translation, and post-translational modification. Single-cell sequencing is a promising technology for the study of photoreceptor development. This review presents an overview of the types of human photoreceptors, summarizes recent discoveries in the regulatory mechanisms underlying their development at single-cell resolution, and outlines the prospects in this field.


Author(s):  
Warlen Pereira Piedade ◽  
Kayla Titialii-Torres ◽  
Ann C. Morris ◽  
Jakub K. Famulski

Congenital retinal dystrophies are a major cause of unpreventable and incurable blindness worldwide. Mutations in CDHR1, a retina specific cadherin, are associated with cone-rod dystrophy. The ubiquitin proteasome system (UPS) is responsible for mediating orderly and precise targeting of protein degradation to maintain biological homeostasis and coordinate proper development, including retinal development. Recently, our lab uncovered that the seven in absentia (Siah) family of E3 ubiquitin ligases play a role in optic fissure fusion and identified Cdhr1a as a potential target of Siah. Using two-color whole mount in situ hybridization and immunohistochemistry, we detected siah1 and cdhr1a co-expression as well as protein localization in the retinal outer nuclear layer (ONL), and more precisely in the connecting cilium of rods and cones between 3–5 days post fertilization (dpf). We confirmed that Siah1 targets Cdhr1a for proteasomal degradation by co-transfection and co-immunoprecipitation in cell culture. To analyze the functional importance of this interaction, we created two transgenic zebrafish lines that express siah1 or an inactive siah1 (siah1ΔRING) under the control of the heat shock promoter to modulate Siah activity during photoreceptor development. Overexpression of siah1, but not siah1ΔRING, resulted in a decrease in the number of rods and cones at 72 h post fertilization (hpf). The number of retinal ganglion cells, amacrine and bipolar cells was not affected by Siah1 overexpression, and there was no significant reduction of proliferating cells in the Siah1 overexpressing retina. We did, however, detect increased cell death, confirmed by an increase in the number of TUNEL + cells in the ONL, which was proteasome-dependent, as proteasome inhibition rescued the cell death phenotype. Furthermore, reduction in rods and cones resulting from increased Siah1 expression was rescued by injection of cdhr1a mRNA, and to an even greater extent by injection of a Siah1-insensitive cdhr1a variant mRNA. Lastly, CRISPR induced loss of Cdhr1a function phenocopied Siah1 overexpression resulting in a significant reduction of rods and cones. Taken together, our work provides the first evidence that Cdhr1a plays a role during early photoreceptor development and that Cdhr1a is regulated by Siah1 via the UPS.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cagney E. Coomer ◽  
Stephen G. Wilson ◽  
Kayla F. Titialii-Torres ◽  
Jessica D. Bills ◽  
Laura A. Krueger ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cagney E. Coomer ◽  
Stephen G. Wilson ◽  
Kayla F. Titialii-Torres ◽  
Jessica D. Bills ◽  
Laura A. Krueger ◽  
...  

2020 ◽  
Author(s):  
Nicolas Lonfat ◽  
Su Wang ◽  
ChangHee Lee ◽  
Jiho Choi ◽  
Peter J. Park ◽  
...  

AbstractThe vertebrate retina is a highly organized structure of approximately 110 cell types. Retinal progenitor cells (RPCs) produce these cell types in a temporal order that is highly conserved. While some RPCs produce many cell types, some terminally dividing RPCs produce restricted types of daughter cells, such as a cone photoreceptor and a horizontal cell (HC). Here, we compared the transcriptomes and chromatin profiles of such a restricted cone/HC RPC with those of other RPCs. We identified many cis-regulatory modules (CRMs) active in cone/HC RPCs and developing cones. We then showed that Otx2 and Oc1 directly regulate the activity of multiple CRMs genome-wide, including near genes important for cone development, such as Rxrg and Neurod1. In addition, we found that Otx2 regulates itself. These results suggest that Otx2 and Oc1 have a broader role than previously appreciated, and deepen our understanding of retinal development, which may benefit therapies for retinal diseases.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. e1008869
Author(s):  
Ciana Deveau ◽  
Xiaodong Jiao ◽  
Sachihiro C. Suzuki ◽  
Asha Krishnakumar ◽  
Takeshi Yoshimatsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document