Examining Sensor Agreement in Neural Network Blood Glucose Prediction

2021 ◽  
pp. 193229682110182
Author(s):  
Aaron P. Tucker ◽  
Arthur G. Erdman ◽  
Pamela J. Schreiner ◽  
Sisi Ma ◽  
Lisa S. Chow

Successful measurements of interstitial glucose are a key component in providing effective care for patients with diabetes. Recently, there has been significant interest in using neural networks to forecast future glucose values from interstitial measurements collected by continuous glucose monitors (CGMs). While prediction accuracy continues to improve, in this work we investigated the effect of physiological sensor location on neural network blood glucose forecasting. We used clinical data from patients with Type 2 Diabetes who wore blinded FreeStyle Libre Pro CGMs (Abbott) on both their right and left arms continuously for 12 weeks. We trained patient-specific prediction algorithms to test the effect of sensor location on neural network forecasting ( N = 13, Female = 6, Male = 7). In 10 of our 13 patients, we found at least one significant ( P < .05) increase in forecasting error in algorithms which were tested with data taken from a different location than data which was used for training. These reported results were independent from other noticeable physiological differences between subjects (eg, height, age, weight, blood pressure) and independent from overall variance in the data. From these results we observe that CGM location can play a consequential role in neural network glucose prediction.

Author(s):  
Caitlin E. Malik ◽  
David M. Wong ◽  
Katarzyna A. Dembek ◽  
Katherine E. Wilson

Abstract OBJECTIVE To determine the accuracy of 2 interstitial glucose-monitoring systems (GMSs) for use in horses compared with a point-of-care (POC) glucometer and standard laboratory enzymatic chemistry method (CHEM). ANIMALS 8 clinically normal adult horses. PROCEDURES One of each GMS device (Dexcom G6 and Freestyle Libre 14-day) was placed on each horse, and blood glucose concentration was measured via POC and CHEM at 33 time points and compared with simultaneous GMS readings. An oral glucose absorption test (OGAT) was performed on day 2, and glucose concentrations were measured and compared. RESULTS Glucose concentrations were significantly correlated with one another between all devices on days 1 to 5. Acceptable agreement was observed between Dexcom G6 and Freestyle Libre 14-day when compared with CHEM on days 1, 3, 4, and 5 with a combined mean bias of 10.45 mg/dL and 1.53 mg/dL, respectively. During dextrose-induced hyperglycemia on day 2, mean bias values for Dexcom G6 (10.49 mg/dL) and FreeStyle Libre 14-day (0.34 mg/dL) showed good agreement with CHEM. CLINICAL RELEVANCE Serial blood glucose measurements are used to diagnose or monitor a variety of conditions in equine medicine; advances in near-continuous interstitial glucose monitoring allow for minimally invasive glucose assessment, thereby reducing stress and discomfort to patients. Data from this study support the use of the Dexcom G6 and Freestyle Libre 14-day interstitial glucose-monitoring systems to estimate blood glucose concentrations in horses.


2008 ◽  
Author(s):  
Chit Siang Soh ◽  
Xiqin Zhang ◽  
Jianhong Chen ◽  
P. Raveendran ◽  
Phey Hong Soh ◽  
...  

2010 ◽  
Vol 03 (02) ◽  
pp. 81-90
Author(s):  
NATALJA SKREBOVA EIKJE

Recently introduced horizontal attenuated total reflectance (HATR) Fourier transform infrared (FTIR) spectroscopy for real-time assessment and continuous monitoring of glucose biomolecules in the skin tissue directly on the patients might appear a promising alternative to interpret the activity of interstitial glucose metabolism in vivo by means of evaluating the dynamics of changes of glucose concentrations in interstitial fluid (IF). In the present study, in vivo spectra by ATR-FTIR spectroscopy were obtained post-prandially during a 120–180-minute continuous monitoring in three patients with type 2 diabetes and compared to pre-prandial spectra. In all patients with diabetes interstitial glucose levels at 1030 and 1041 cm-1 reflected the best relationship with blood glucose. The lag time (LT) required for glucose to diffuse from the capillary to epidermal skin tissue was calculated between 0 and 60 minutes at all measured glucose biomolecules. Data showed intra- and inter-subject variations of each glucose biomolecule, pointing to similarities and differences among interstitial glucose metabolism of the patients. Finally, the findings suggest that HATR-FTIR spectroscopy might have the potential for clinical interpretation of activity of glucose metabolism for diagnosis, management, and treatment of patients with diabetes.


2020 ◽  
Vol 40 (4) ◽  
pp. 1586-1599
Author(s):  
Ganjar Alfian ◽  
Muhammad Syafrudin ◽  
Muhammad Anshari ◽  
Filip Benes ◽  
Fransiskus Tatas Dwi Atmaji ◽  
...  

2020 ◽  
Vol 10 (9) ◽  
pp. 3227
Author(s):  
Yan Wang ◽  
Tao Wang

In recent years, with increasing social pressure and irregular schedules, many people have developed unhealthy eating habits, which has resulted in an increasing number of patients with diabetes, a disease that cannot be cured under the current medical conditions, and can only be mitigated by early detection and prevention. A lot of human and material resources are required for the detection of the blood glucose of a large number of people in medical examination, while the integrated learning model based on machine learning can quickly predict the blood glucose level and assist doctors in treatment. Therefore, an improved LightGBM model based on the Bayesian hyper-parameter optimization algorithm is proposed for the prediction of blood glucose, namely HY_LightGBM, which optimizes parameters using a Bayesian hyper-parameter optimization algorithm based on LightGBM. The Bayesian hyper-parameter optimization algorithm is a model-based method for finding the minimum value of the function so as to obtain the optimal parameters of the LightGBM model. Experiments have demonstrated that the parameters obtained by the Bayesian hyper-parameter optimization algorithm are superior to those obtained by a genetic algorithm and random search. The improved LightGBM model based on the Bayesian hyper-parameter optimization algorithm achieves a mean square error of 0.5961 in blood glucose prediction, with a higher accuracy than the XGBoost model and CatBoost model.


2014 ◽  
Author(s):  
Ozlem Turhan Iyidir ◽  
Mustafa Unubol ◽  
Bulent Ogun Hatipoglu ◽  
Ceyla Konca Degertekin

Sign in / Sign up

Export Citation Format

Share Document