scholarly journals Cytotoxic Effect on Cancer Cells and Structural Identification of Phenols from Spatholobi Caulis by HPLC-ESI-MSn

2009 ◽  
Vol 4 (6) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Dan Lu ◽  
Hua He ◽  
Bin Wu ◽  
Shanjing Yao

To find fractions from Spatholobi caulis with cytotoxic effects on cancer cell lines, screening tests were carried out using the SRB assay on the HL60 cell line. Further investigation with HL60 and another four human cancer cell lines (KB, K562, MCF-7 and Hep G2), revealed a dose-dependent response. High-performance liquid chromatography coupled with electrospray ionization-tandem mass spectrometry (HPLC- ESI-MSn) was used to isolate and identify the active constituents from the active fraction. Three fractions (F-IV, F-V and F-VII) showed in vitro cytotoxicity. F-V inhibited the growth of cancer cells in a dose-dependent manner. The IC50 values for KB, K562 and HL60 cells were 17.6, 8.3 and 9.7 μg/mL, respectively. The dominating constituents of F-V were either identified or tentatively characterized as nine phenolic compounds, eight isoflavones and 9-methoxycoumestrol. The isoflavones 7-hydroxy-3′,4′-dimethoxy isoflavone, 7-hydroxy-6,2′,4′-trimethoxy isoflavone and 3′-hydroxy-7,4′-dimethoxy isoflavone are reported for the first time for Spatholobi caulis. The results suggest that these compounds contribute to the cytotoxic effect of Spatholobi caulis.

2021 ◽  
Vol 22 (15) ◽  
pp. 7798
Author(s):  
Elena G. Varlamova ◽  
Mikhail V. Goltyaev ◽  
Valentina N. Mal’tseva ◽  
Egor A. Turovsky ◽  
Ruslan M. Sarimov ◽  
...  

In recent decades, studies on the functional features of Se nanoparticles (SeNP) have gained great popularity due to their high biocompatibility, stability, and pronounced selectivity. A large number of works prove the anticarcinogenic effect of SeNP. In this work, the molecular mechanisms regulating the cytotoxic effects of SeNP, obtained by laser ablation, were studied by the example of four human cancer cell lines: A-172 (glioblastoma), Caco-2, (colorectal adenocarcinoma), DU-145 (prostate carcinoma), MCF-7 (breast adenocarcinoma). It was found that SeNP had different concentration-dependent effects on cancer cells of the four studied human lines. SeNP at concentrations of less than 1 μg/mL had no cytotoxic effect on the studied cancer cells, with the exception of the A-172 cell line, for which 0.5 μg/mL SeNP was the minimum concentration affecting its metabolic activity. It was shown that SeNP concentration-dependently caused cancer cell apoptosis, but not necrosis. In addition, it was found that SeNP enhanced the expression of pro-apoptotic genes in almost all cancer cell lines, with the exception of Caco-2 and activated various pathways of adaptive and pro-apoptotic signaling pathways of UPR. Different effects of SeNP on the expression of ER-resident selenoproteins and selenium-containing glutathione peroxidases and thioredoxin reductases, depending on the cell line, were established. In addition, SeNP triggered Ca2+ signals in all investigated cancer cell lines. Different sensitivity of cancer cell lines to SeNP can determine the induction of the process of apoptosis in them through regulation of the Ca2+ signaling system, mechanisms of ER stress, and activation of various expression patterns of genes encoding pro-apoptotic proteins.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
IO Mondranondra ◽  
A Suedee ◽  
A Kijjoa ◽  
M Pinto ◽  
N Nazareth ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shigetoshi Yokoyama ◽  
Shun Nakayama ◽  
Lei Xu ◽  
Aprile L. Pilon ◽  
Shioko Kimura

AbstractNon-canonical inflammasome activation that recognizes intracellular lipopolysaccharide (LPS) causes pyroptosis, the inflammatory death of innate immune cells. The role of pyroptosis in innate immune cells is to rapidly eliminate pathogen-infected cells and limit the replication niche in the host body. Whether this rapid cell elimination process of pyroptosis plays a role in elimination of cancer cells is largely unknown. Our earlier study demonstrated that a multi-functional secreted protein, secretoglobin (SCGB) 3A2, chaperones LPS to cytosol, and activates caspase-11 and the non-canonical inflammasome pathway, leading to pyroptosis. Here we show that SCGB3A2 exhibits marked anti-cancer activity against 5 out of 11 of human non-small cell lung cancer cell lines in mouse xenographs, while no effect was observed in 6 of 6 small cell lung cancer cell lines examined. All SCGB3A2-LPS-sensitive cells express syndecan 1 (SDC1), a SCGB3A2 cell surface receptor, and caspase-4 (CASP4), a critical component of the non-canonical inflammasome pathway. Two epithelial-derived colon cancer cell lines expressing SDC1 and CASP4 were also susceptible to SCGB3A2-LPS treatment. TCGA analysis revealed that lung adenocarcinoma patients with higher SCGB3A2 mRNA levels exhibited better survival. These data suggest that SCGB3A2 uses the machinery of pyroptosis for the elimination of human cancer cells via the non-canonical inflammasome pathway, and that SCGB3A2 may serve as a novel therapeutic to treat cancer, perhaps in combination with immuno and/or targeted therapies.


2019 ◽  
Vol 14 (1) ◽  
pp. 1934578X1901400
Author(s):  
Triet Thanh Nguyen ◽  
Nadine Kretschmer ◽  
Eva-Maria Pferschy-Wenzig ◽  
Olaf Kunert ◽  
Rudolf Bauer

Helicteres L. is one of the genera of the Sterculiaceae family with several remarkable activities. Previous studies revealed that terpenoids, flavonoids, and lignans are the dominant constituents of Helicteres species. However, information about this genus is scarce and unsystematic. Most of the phytochemical and pharmacological investigations have been mainly reported on Helicteres angustifolia and Helicteres isora, which are commonly used in China and Indonesia, respectively. In the present study, two terpenoids: 3β- O-acetylbetulinic acid (1) and simiarenol (2) together with three phenolic compounds: 4,4'-sulfinylbis(2-( tert-butyl)-5-methylphenol) (3), 7- O-methylisoscutellarein (4), 7,4'-di- O-methylisoscutellarein (5), and a mixture of stigmasterol and β-sitosterol were isolated and structurally elucidated from the aerial parts of Helicteres hirsuta Lour. Compounds 1-5 were tested for cytotoxicity on four human cancer cell lines: leukemia CCRF-CEM, breast MDA-MB-231, colon HCT116 and glioblastoma U251 cancer cells. Among them, compounds 1 and 3 showed moderate activity on CCRF-CEM and HCT116 cancer cells with IC50 values ranging from 14.6 to 31.5 μM (P < 0.05). This is the first time these compounds have been reported from this plant. To the best of our knowledge, compound 3 is novel in nature although it has been chemically synthesized before, and compounds 1, 2, and 4 are new to this plant family (Sterculiaceae).


2021 ◽  
Author(s):  
Elizaveta A. Kvyatkovskaya ◽  
Kseniya K. Borisova ◽  
Polina P. Epifanova ◽  
Aleksey A. Senin ◽  
Victor N. Khrustalev ◽  
...  

A 3,5a-epoxyfuro[2,3,4-de]isoquinoline scaffold, the product of ROCM of 1,4:5,8-diepoxynaphthalenes, is a promising antiproliferative agent toward breast and prostate human cancer cell lines.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3755 ◽  
Author(s):  
James Knockleby ◽  
Bruno Pradines ◽  
Mathieu Gendrot ◽  
Joel Mosnier ◽  
Thanh Tam Nguyen ◽  
...  

Natural products remain a viable source of novel therapeutics, and as detection and extraction techniques improve, we can identify more molecules from a broader set of plant tissues. The aim of this study was an investigation of the cytotoxic and anti-plasmodial activities of the methanol extract from Stephania dielsiana Y.C. Wu leaves and its isolated compounds. Our study led to the isolation of seven alkaloids, among which oxostephanine (1) is the most active against several cancer cell lines including HeLa, MDA-MB231, MDA-MB-468, MCF-7, and non-cancer cell lines, such as 184B5 and MCF10A, with IC50 values ranging from 1.66 to 4.35 μM. Morever, oxostephanine (1) is on average two-fold more active against cancer cells than stephanine (3), having a similar chemical structure. Cells treated with oxostephanine (1) are arrested at G2/M cell cycle, followed by the formation of aneuploidy and apoptotic cell death. The G2/M arrest appears to be due, at least in part, to the inactivation of Aurora kinases, which is implicated in the onset and progression of many forms of human cancer. An in-silico molecular modeling study suggests that oxostephanine (1) binds to the ATP binding pocket of Aurora kinases to inactivate their activities. Unlike oxostephanine (1), thailandine (2) is highly effective against only the triple-negative MDA-MB-468 breast cancer cells. However, it showed excellent selectivity against the cancer cell line when compared to its effects on non-cancer cells. Furthermore, thailandine (2) showed excellent anti-plasmodial activity against both chloroquine-susceptible 3D7 and chloroquine-resistant W2 Plasmodium falciparum strains. The structure–activity relationship of isolated compound was also discussed in this study. The results of this study support the traditional use of Stephania dielsiana Y.C. Wu and the lead molecules identified can be further optimized for the development of highly effective and safe anti-cancer and anti-plasmodial drugs.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 677 ◽  
Author(s):  
Hong-Jhih Lin ◽  
Jinn-Hsuan Ho ◽  
Li-Chen Tsai ◽  
Fang-Yu Yang ◽  
Ling-Ling Yang ◽  
...  

The objective of this study was to synthesize the 9-/13-position substituted berberine derivatives and evaluate their cytotoxic and photocytotoxic effects against three human cancer cell lines. Among all the synthesized compounds, 9-O-dodecyl- (5e), 13-dodecyl- (6e), and 13-O-dodecyl-berberine (7e) exhibited stronger growth inhibition against three human cancer cell lines, (HepG2, HT-29 and BFTC905), in comparison with structurally related berberine (1). These three compounds also showed the photocytotoxicity in human cancer cells in a concentration-dependent and light dose-dependent manner. Through flow cytometry analysis, we found out a lipophilic group at the 9-/13-position of berberine may have facilitated its penetration into test cells and hence enhanced its photocytotoxicity on the human liver cancer cell HepG2. Further, in cell cycle analysis, 5e, 6e, and 7e induced HepG2 cells to arrest at the S phase and caused apoptosis upon irradiation. In addition, photodynamic treatment of berberine derivatives 5e, 6e, and 7e again showed a significant photocytotoxic effects on HepG2 cells, induced remarkable cell apoptosis, greatly increased intracellular ROS level, and the loss of mitochondrial membrane potential. These results over and again confirmed that berberine derivatives 5e, 6e, and 7e greatly enhanced photocytotoxicity. Taken together, the test data led us to conclude that berberine derivatives with a dodecyl group at the 9-/13-position could be great candidates for the anti-liver cancer medicines developments.


2020 ◽  
Vol 19 (6) ◽  
pp. 790-799
Author(s):  
Miryam Chiara Malacarne ◽  
Stefano Banfi ◽  
Enrico Caruso

Two new aza-BODIPY photosensitizers featuring an iodine atom on each pyrrolic unit of their structure, were synthesized in fairly good yields and tested in vitro on two human cancer cell lines to assess their photodynamic efficacy.


2019 ◽  
Vol 11 (10) ◽  
pp. 829-844 ◽  
Author(s):  
Antonella Di Liddo ◽  
Camila de Oliveira Freitas Machado ◽  
Sandra Fischer ◽  
Stefanie Ebersberger ◽  
Andreas W Heumüller ◽  
...  

Abstract Hypoxia is associated with several diseases, including cancer. Cells that are deprived of adequate oxygen supply trigger transcriptional and post-transcriptional responses, which control cellular pathways such as angiogenesis, proliferation, and metabolic adaptation. Circular RNAs (circRNAs) are a novel class of mainly non-coding RNAs, which have been implicated in multiple cancers and attract increasing attention as potential biomarkers. Here, we characterize the circRNA signatures of three different cancer cell lines from cervical (HeLa), breast (MCF-7), and lung (A549) cancer under hypoxia. In order to reliably detect circRNAs, we integrate available tools with custom approaches for quantification and statistical analysis. Using this consolidated computational pipeline, we identify ~12000 circRNAs in the three cancer cell lines. Their molecular characteristics point to an involvement of complementary RNA sequences as well as trans-acting factors in circRNA biogenesis, such as the RNA-binding protein HNRNPC. Notably, we detect a number of circRNAs that are more abundant than their linear counterparts. In addition, 64 circRNAs significantly change in abundance upon hypoxia, in most cases in a cell type-specific manner. In summary, we present a comparative circRNA profiling in human cancer cell lines, which promises novel insights into the biogenesis and function of circRNAs under hypoxic stress.


Sign in / Sign up

Export Citation Format

Share Document