scholarly journals Inhibitory Effect of Pelargonidin on Secretory Group IIA Phospholipase A2

2018 ◽  
Vol 13 (8) ◽  
pp. 1934578X1801300
Author(s):  
In-Chul Lee ◽  
Jong-Sup Bae

The expression of secretory group IIA phospholipase A2 (sPLA2-IIA) has been shown to be elevated in various inflammatory diseases, and lipopolysaccharide (LPS) up-regulates the expression of sPLA2-IIA in human umbilical vein endothelial cells (HUVECs). Pelargonidin (PEL) is a well-known red pigment found in plants, and has been reported as having important biological activities that are potentially beneficial for human health. Here, PEL was examined for its effects on the expression and activity of sPLA2-IIA in HUVECs and mouse. Post treatment of cells or mouse with PEL inhibited LPS-induced expression and activity of sPLA2-IIA. Therefore, these results suggest that PEL inhibited LPS mediated expression of sPLA2-IIA.

2016 ◽  
Vol 11 (9) ◽  
pp. 1934578X1601100
Author(s):  
Hyukjae Choi ◽  
Sae-Kwang Ku ◽  
Jong-Sup Bae

Diketopiperazines, natural products found in bacteria, fungi, marine sponges, gorgonian and red algae, are cyclic dipeptides possessing relatively simple and rigid structures with chiral nature and various side chains. The compounds in this structure class have been known to possess diverse bioactivities including antibiotic activity, anti-cancer activity, neuroprotective activity, and anti-inflammatory activity. The expression of secretory group IIA phospholipase A2 (sPLA2-IIA) is enhanced by development of inflammatory disorders. Aim of this study is to determine the effects of diketopiperazines on the secretion and activity of sPLA2-IIA by lipopolysaccharide (LPS) in human umbilical vein endothelial cells (HUVECs). To do this, sPLA2-IIA expression was induced in the LPS-stimulated HUVECs and mice to evaluate the effect of diketopiperazines. Results showed that diketopiperazines remarkably suppressed the LPS-mediated protein expression and activity of sPLA2-IIA via inhibition of phosphorylation of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK) 1/2. These results demonstrated that diketopiperazines might play an important role in the modulation of sPLA2-IIA expression and activity in response to the inflammatory diseases.


2017 ◽  
Vol 12 (6) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
In-Chul Lee ◽  
Dae Yong Kim ◽  
Jong-Sup Bae

The expression of secretory group IIA phospholipase A2 (sPLA2-IIA) has been shown to be elevated in various inflammatory diseases, and lipopolysaccharide (LPS) up-regulates the expression of sPLA2-IIA in human umbilical vein endothelial cells (HUVECs). Zingerone (ZGR), a phenolic alkanone isolated from ginger, has been reported to have various pharmacological activities. Here, we examined the effects of ZRG on the expression and activity of sPLA2-IIA in LPS-activated HUVECs and in mouse models of endotoxemia and sepsis. Treatment of cells or mice with ZRG inhibited LPS-induced expression and activity of sPLA2-IIA. In addition, ZRG suppressed LPS-mediated activation of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK) 1/2. These results suggest that ZRG inhibits LPS-mediated activation of sPLA2-IIA expression by suppressing cPLA2 and ERK 1/2.


Author(s):  
Dominika Dudzinska ◽  
Boguslawa Luzak ◽  
Magdalena Boncler ◽  
Joanna Rywaniak ◽  
Dorota Sosnowska ◽  
...  

AbstractMany experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1–15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1215
Author(s):  
Christoph Lammel ◽  
Julia Zwirchmayr ◽  
Jaqueline Seigner ◽  
Judith M. Rollinger ◽  
Rainer de Martin

Twenty natural remedies traditionally used against different inflammatory diseases were probed for their potential to suppress the expression of the inflammatory markers E-selectin and VCAM-1 in a model system of IL-1 stimulated human umbilical vein endothelial cells (HUVEC). One third of the tested extracts showed in vitro inhibitory effects comparable to the positive control oxozeaenol, an inhibitor of TAK1. Among them, the extract derived from the roots and rhizomes of Peucedanum ostruthium (i.e., Radix Imperatoriae), also known as masterwort, showed a pronounced and dose-dependent inhibitory effect. Reporter gene analysis demonstrated that inhibition takes place on the transcriptional level and involves the transcription factor NF-κB. A more detailed analysis revealed that the P. ostruthium extract (PO) affected the phosphorylation, degradation, and resynthesis of IκBα, the activation of IKKs, and the nuclear translocation of the NF-κB subunit RelA. Strikingly, early effects on this pathway were less affected as compared to later ones, suggesting that PO may act on mechanism(s) that are downstream of nuclear translocation. As the majority of cognate NF-κB inhibitors affect upstream events such as IKK2, these findings could indicate the existence of targetable signaling events at later stages of NF-κB activation.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Martha Lappas

A prominent feature of inflammatory diseases is endothelial dysfunction. Factors associated with endothelial dysfunction include proinflammatory cytokines, adhesion molecules, and matrix degrading enzymes. At the transcriptional level, they are regulated by the histone deacetylase sirtuin (SIRT) 1 via its actions on the proinflammatory transcription factor nuclear factor-κB (NF-κB). The role of SIRT6, also a histone deacetylase, in regulating inflammation in endothelial cells is not known. The aim of this study was to determine the effect of SIRT6 knockdown on inflammatory markers in human umbilical vein endothelial cells (HUVECs) in the presence of lipopolysaccharide (LPS). LPS decreased expression of SIRT6 in HUVECs. Knockdown of SIRT6 increased the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8), COX-prostaglandin system, ECM remodelling enzymes (MMP-2, MMP-9 and PAI-1), the adhesion molecule ICAM-1, and proangiogenic growth factors VEGF and FGF-2; cell migration; cell adhesion to leukocytes. Loss of SIRT6 increased the expression of NF-κB, whereas overexpression of SIRT6 was associated with decreased NF-κB transcriptional activity. Taken together, these results demonstrate that the loss of SIRT6 in endothelial cells is associated with upregulation of genes involved in inflammation, vascular remodelling, and angiogenesis. SIRT6 may be a potential pharmacological target for inflammatory vascular diseases.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2363-2369 ◽  
Author(s):  
Ta-Kashi Ito ◽  
Genichiro Ishii ◽  
Seiji Saito ◽  
Keiichi Yano ◽  
Ayuko Hoshino ◽  
...  

AbstractVascular endothelial growth factor (VEGF) signaling in endothelial cells serves a critical role in physiologic and pathologic angiogenesis. Endothelial cells secrete soluble VEGF receptor-1 (sVEGFR-1/sFlt-1), an endogenous VEGF inhibitor that sequesters VEGF and blocks its access to VEGF receptors. This raises the question of how VEGF passes through this endogenous VEGF trap to reach its membrane receptors on endothelial cells, a step required for VEGF-driven angiogenesis. Here, we show that matrix metalloproteinase-7 (MMP-7) degrades human sVEGFR-1, which increases VEGF bioavailability around the endothelial cells. Using a tube formation assay, migration assay, and coimmunoprecipitation assay with human umbilical vein endothelial cells (HUVECs), we show that the degradation of sVEGFR-1 by MMP-7 liberates the VEGF165 isoform from sVEGFR-1. The presence of MMP-7 abrogates the inhibitory effect of sVEGFR-1 on VEGF-induced phosphorylation of VEGF receptor-2 on HUVECs. These data suggest that VEGF escapes the sequestration by endothelial sVEGFR-1 and promotes angiogenesis in the presence of MMP-7.


2002 ◽  
Vol 70 (4) ◽  
pp. 1860-1866 ◽  
Author(s):  
Elisabeth Elass ◽  
Maryse Masson ◽  
Joël Mazurier ◽  
Dominique Legrand

ABSTRACT Interleukin-8 (IL-8), a C-X-C chemokine bound to endothelium proteoglycans, initiates the activation and selective recruitment of leukocytes at inflammatory foci. We demonstrate that human lactoferrin, an antimicrobial lipopolysaccharide (LPS)-binding protein, decreases both IL-8 mRNA and protein expression induced by the complex Escherichia coli 055:B5 LPS/sCD14 in human umbilical vein endothelial cells. The use of recombinant lactoferrins mutated in the LPS-binding sites indicates that this inhibitory effect is mediated by an interaction of lactoferrin with LPS and CD14s that suppresses the endotoxin biological activity. Furthermore, since dimeric IL-8 and lactoferrin are both proteoglycan-binding molecules, the competition between these proteins for heparin binding was investigated. Lactoferrin strongly inhibited the interaction of radiolabeled IL-8 to immobilized heparin, whereas a lactoferrin variant lacking the amino acid residues essential for heparin binding was not inhibitory. Moreover, this process is specific, since serum transferrin, a glycoprotein whose structure is close to that of lactoferrin, did not prevent the interaction of IL-8 with heparin. These results suggest that the anti-inflammatory properties of lactoferrin during septicemia are related, at least in part, to the regulation of IL-8 production and also to the ability of lactoferrin to compete with chemokines for their binding to proteoglycans.


Sign in / Sign up

Export Citation Format

Share Document