scholarly journals Nasturtium officinale Extract Suppresses Osteoclastogenesis in RAW 264 Cells by Inhibiting IκB-Kinase β

2021 ◽  
Vol 16 (6) ◽  
pp. 1934578X2110206
Author(s):  
Yukino Tsunekage ◽  
Masatoshi Takeiri ◽  
Yuri Yoshioka ◽  
Shinichi Matsumura ◽  
Yoshihide Kimura ◽  
...  

Osteoclasts are large, multinucleated, bone-absorbing cells and play a crucial role in osteolytic bone diseases such as osteopetrosis and rheumatoid arthritis. Therefore, controlling osteoclast differentiation and activation has been considered a promising strategy to prevent and treat osteolytic diseases. In this study, we demonstrate, using the mouse monocyte-derived macrophage-like cell line RAW 264, that extract from Nasturtium officinale or watercress, an herb of European origin, suppresses receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in vitro . N. officinale extract decreased the emergence of tartrate-resistant acid phosphatase-positive differentiated multinuclear cells and inhibited their bone-absorbing activity. The extract decreased expression of genes associated with osteoclast differentiation and function. Induction of nuclear factor of activated T cells c1 (NFATc1), the master transcriptional regulator of osteoclastogenesis, was blunted by N. officinale extract. Activation of nuclear factor-κB and mitogen-activated protein kinases pathways, both of which are necessary for NFATc1 induction and osteoclast differentiation, was also suppressed by the extract. Among upstream kinases, activity of IκB-kinase β (IKKβ), but not that of TGFβ-activated kinase 1, was inhibited by N. officinale extract in vitro. Pharmacological inhibition of IKKβ by a specific inhibitor PS1145 in RAW 264 cells mostly recaptured the inhibitory action of N. officinale extract. These findings provide a novel pharmacological action of N. officinale and its potential usefulness for the prevention of osteoporosis.

2016 ◽  
Vol 36 (19) ◽  
pp. 2451-2463 ◽  
Author(s):  
Takashi Iezaki ◽  
Kazuya Fukasawa ◽  
Gyujin Park ◽  
Tetsuhiro Horie ◽  
Takashi Kanayama ◽  
...  

Bone homeostasis is maintained by the synergistic actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Here, we show that the transcriptional coactivator/repressor interferon-related developmental regulator 1 (Ifrd1) is expressed in osteoclast lineages and represents a component of the machinery that regulates bone homeostasis. Ifrd1 expression was transcriptionally regulated in preosteoclasts by receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) through activator protein 1. Global deletion of murineIfrd1increased bone formation and decreased bone resorption, leading to a higher bone mass. Deletion ofIfrd1in osteoclast precursors prevented RANKL-induced bone loss, although no bone loss was observed under normal physiological conditions. RANKL-dependent osteoclastogenesis was impairedin vitroinIfrd1-deleted bone marrow macrophages (BMMs).Ifrd1deficiency increased the acetylation of p65 at residues K122 and K123 via the inhibition of histone deacetylase-dependent deacetylation in BMMs. This repressed the NF-κB-dependent transcription of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), an essential regulator of osteoclastogenesis. These findings suggest that an Ifrd1/NF-κB/NFATc1 axis plays a pivotal role in bone remodelingin vivoand represents a therapeutic target for bone diseases.


2019 ◽  
Vol 8 (4) ◽  
pp. 431 ◽  
Author(s):  
Mi Kim ◽  
Won Kim ◽  
Jae-Eun Byun ◽  
Jung Choi ◽  
Suk Yoon ◽  
...  

Overactivated osteoclasts lead to many bone diseases, including osteoporosis and rheumatoid arthritis. The p38 MAPK (p38) is an essential regulator of the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis and bone loss. We previously reported TAT conjugated thioredoxin-interacting protein-derived peptide (TAT-TN13) as an inhibitor of p38 in hematopoietic stem cells (HSCs). Here, we examined the role of TAT-TN13 in the differentiation and function of osteoclasts. TAT-TN13 significantly suppressed RANKL-mediated differentiation of RAW 264.7 cells and bone marrow macrophages (BMMs) into osteoclasts. TAT-TN13 also inhibited the RANKL-induced activation of NF-κB and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), leading to the decreased expression of osteoclast-specific genes, including tartrate-resistant acid phosphatase (TRAP) and Cathepsin K. Additionally, TAT-TN13 treatment protected bone loss in ovariectomized (OVX) mice. Taken together, these results suggest that TAT-TN13 inhibits osteoclast differentiation by regulating the p38 and NF-κB signaling pathway; thus, it may be a useful agent for preventing or treating osteoporosis.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 345 ◽  
Author(s):  
Sheng-Hua Lu ◽  
Yi-Jan Hsia ◽  
Kuang-Chung Shih ◽  
Tz-Chong Chou

Excessive osteoclast differentiation and/or function plays a pivotal role in the pathogenesis of bone diseases such as osteoporosis and rheumatoid arthritis. Here, we examined whether fucoidan, a sulfated polysaccharide present in brown algae, attenuates receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis in vitro and lipopolysaccharide (LPS)-induced bone resorption in vivo, and investigated the molecular mechanisms involved. Our results indicated that fucoidan significantly inhibited osteoclast differentiation in RANKL-stimulated macrophages and the bone resorbing activity of osteoclasts. The effects of fucoidan may be mediated by regulation of Akt/GSK3β/PTEN signaling and suppression of the increase in intracellular Ca2+ level and calcineurin activity, thereby inhibiting the translocation of nuclear factor-activated T cells c1 (NFATc1) into the nucleus. However, fucoidan-mediated NFATc1 inactivation was greatly reversed by kenpaullone, a GSK3β inhibitor. In addition, using microcomputer tomography (micro-CT) scanning and bone histomorphometry, we found that fucoidan treatment markedly prevented LPS-induced bone erosion in mice. Collectively, we demonstrated that fucoidan was capable of inhibiting osteoclast differentiation and inflammatory bone loss, which may be modulated by regulation of Akt/GSK3β/PTEN/NFATc1 and Ca2+/calcineurin signaling cascades. These findings suggest that fucoidan may be a potential agent for the treatment of osteoclast-related bone diseases.


2020 ◽  
Vol 52 (4) ◽  
pp. 691-701 ◽  
Author(s):  
Eun Mi Go ◽  
Ju Hee Oh ◽  
Jin Hee Park ◽  
Soo Young Lee ◽  
Na Kyung Lee

Abstract Spi-C is an SPI-group erythroblast transformation-specific domain transcription factor expressed during B-cell development. Here, we report that Spi-C is a novel receptor activator of nuclear factor-κB ligand (RANKL)-inducible protein that positively regulates RANKL-mediated osteoclast differentiation and function. Knockdown of Spi-C decreased the expression of RANKL-induced nuclear factor of activated T-cells, cytoplasmic 1, receptor activator of nuclear factor-κB (RANK), and tartrate-resistant acid phosphatase (TRAP), resulting in a marked decrease in the number of TRAP-positive multinucleated cells. Spi-C-transduced bone marrow-derived monocytes/macrophages (BMMs) displayed a significant increase in osteoclast formation in the presence of RANKL. In addition, Spi-C-depleted cells failed to show actin ring formation or bone resorption owing to a marked reduction in the expression of RANKL-mediated dendritic cell-specific transmembrane protein and the d2 isoform of vacuolar (H+) ATPase V0 domain, which are known osteoclast fusion-related genes. Interestingly, RANKL stimulation induced the translocation of Spi-C from the cytoplasm into the nucleus during osteoclastogenesis, which was specifically blocked by inhibitors of p38 mitogen-activated protein kinase (MAPK) or PI3 kinase. Moreover, Spi-C depletion prevented RANKL-induced MAPK activation and the degradation of inhibitor of κB-α (IκBα) in BMMs. Collectively, these results suggest that Spi-C is a novel positive regulator that promotes both osteoclast differentiation and function.


2019 ◽  
Vol 47 (02) ◽  
pp. 439-455 ◽  
Author(s):  
Sang-Yong Han ◽  
Yun-Kyung Kim

Osteoporosis is a common disorder of bone remodeling, marked by excessive osteoclast formation. Recent studies indicated that berberine (BBR) is a potential natural drug for the treatment of various bone diseases. However, it still needs to be further studied for the treatment of osteoporosis. The current study investigated the inhibitory effects of BBR on receptor activator of nuclear factor-[Formula: see text]B ligand (RANKL)-induced osteoclast differentiation in vitro and in vivo. Cell-based assays were performed using osteoclasts generated in cultures of murine bone marrow-derived macrophages (BMMs) treated with RANKL and M-CSF. The effects of BBR on in vivo lipopolysaccharide (LPS)-mediated bone loss were evaluated using ICR mice. BBR significantly inhibited TRAP-positive osteoclast formation induced by RANKL. BBR also inhibited RANKL-induced Akt, p38 and ERK phosphorylation and I[Formula: see text]B degradation, and suppressed RANKL-induced expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which is a key transcription factors for osteoclast formation. BBR reduced the mRNA levels of osteoclast markers, including TRAP, osteoclast-associated receptor (OSCAR), cathepsin K, and ATPase H[Formula: see text] transporting V0 subunit d2 (ATP6v0d2). Moreover, BBR prevented LPS-mediated bone loss in vivo. We suggest BBR as a natural compound that can be a potential therapeutic agent for osteoclast-related bone diseases.


2021 ◽  
Vol 22 (16) ◽  
pp. 8888
Author(s):  
Myoung Jun Kim ◽  
Hyuk Soon Kim ◽  
Sangyong Lee ◽  
Keun Young Min ◽  
Wahn Soo Choi ◽  
...  

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) performed by O-GlcNAc transferase (OGT) is a nutrient-responsive post-translational modification (PTM) via the hexosamine biosynthetic pathway (HBP). Various transcription factors (TFs) are O-GlcNAcylated, affecting their activities and significantly contributing to cellular processes ranging from survival to cellular differentiation. Given the pleiotropic functions of O-GlcNAc modification, it has been studied in various fields; however, the role of O-GlcNAcylation during osteoclast differentiation remains to be explored. Kinetic transcriptome analysis during receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation revealed that the nexus of major nutrient metabolism, HBP was critical for this process. We observed that the critical genes related to HBP activation, including Nagk, Gfpt1, and Ogt, were upregulated, while the global O-GlcNAcylation was increased concomitantly during osteoclast differentiation. The O-GlcNAcylation inhibition by the small-molecule inhibitor OSMI-1 reduced osteoclast differentiation in vitro and in vivo by disrupting the translocation of NF-κB p65 and nuclear factor of activated T cells c1 (NFATc1) into the nucleus by controlling their PTM O-GlcNAcylation. Furthermore, OSMI-1 had a synergistic effect with bone target therapy on osteoclastogenesis. Lastly, knocking down Ogt with shRNA (shOgt) mimicked OSMI-1’s effect on osteoclastogenesis. Targeting O-GlcNAcylation during osteoclast differentiation may be a valuable therapeutic approach for osteoclast-activated bone diseases.


Endocrinology ◽  
2005 ◽  
Vol 146 (10) ◽  
pp. 4349-4361 ◽  
Author(s):  
A. M. Schwab ◽  
S. Granholm ◽  
E. Persson ◽  
B. Wilkes ◽  
U. H. Lerner ◽  
...  

Dosage-dependent release of 45Ca was observed from prelabeled mouse calvarial bones after treatment with two thiazolidinediones, troglitazone and ciglitazone. Release of 45Ca by ciglitazone was decreased by the osteoclast inhibitors acetazolamide, calcitonin, 3-amino-1-hydroxypropylidene-1,1-bisphosphonate, and IL-4, but not affected by the peroxisome proliferator-activated receptor γ antagonist, GW 9662, the mitotic inhibitor, hydroxyurea, or indomethacin. Enhanced expression of receptor activator of nuclear factor-κB ligand (RANKL) mRNA and protein and decreased osteoprotegerin (OPG) mRNA and protein were noted after ciglitazone treatment of calvariae. Ciglitazone and RANKL each caused increased mRNA expression of osteoclast markers: calcitonin receptor, tartrate-resistant acid phosphatase, cathepsin K, matrix metalloproteinase-9, integrin β3, and nuclear factor of activated T cells 2. OPG inhibited mRNA expression of RANKL stimulated by ciglitazone, mRNA expression of osteoclast markers stimulated by ciglitazone and RANKL, and 45Ca release stimulated by troglitazone and ciglitazone. Increased expression of IL-1α mRNA by ciglitazone was not linked to resorption stimulated by the thiazolidinedione. Ciglitazone did not increase adipogenic gene expression but enhanced osteocalcin mRNA in calvariae. In addition to exhibiting sensitivity to OPG, data indicate that stimulation of osteoclast differentiation and activity by thiazolidinediones may occur by a nonperoxisome proliferator-activated receptor γ-dependent pathway that does not require cell proliferation, prostaglandins, or IL-1α but is characterized by an increased RANKL to OPG ratio.


2020 ◽  
Vol 21 (15) ◽  
pp. 5240
Author(s):  
Wonyoung Seo ◽  
Suhyun Lee ◽  
Phuong Thao Tran ◽  
Thi Quynh-Mai Ngo ◽  
Okwha Kim ◽  
...  

Olean-12-en-27-oic acids possess a variety of pharmacological effects. However, their effects and underlying mechanisms on osteoclastogenesis remain unclear. This study aimed to investigate the anti-osteoclastogenic effects of five olean-12-en-27-oic acid derivatives including 3α,23-isopropylidenedioxyolean-12-en-27-oic acid (AR-1), 3-oxoolean-12-en-27-oic acid (AR-2), 3α-hydroxyolean-12-en-27-oic acid (AR-3), 23-hydroxy-3-oxoolean-12-en-27-oic acid (AR-4), and aceriphyllic acid A (AR-5). Among the five olean-12-en-27-oic acid derivatives, 3-hydroxyolean-12-en-27-oic acid derivatives, AR-3 and AR-5, significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced mature osteoclast formation by reducing the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, F–actin ring formation, and mineral resorption activity. AR-3 and AR-5 decreased RANKL-induced expression levels of osteoclast-specific marker genes such as c-Src, TRAP, and cathepsin K (CtsK) as well as c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Mice treated with either AR-3 or AR-5 showed significant protection of the mice from lipopolysaccharide (LPS)-induced bone destruction and osteoclast formation. In particular, AR-5 suppressed RANKL-induced phosphorylation of JNK and ERK mitogen-activated protein kinases (MAPKs). The results suggest that AR-3 and AR-5 attenuate osteoclast formation in vitro and in vivo by suppressing RANKL-mediated MAPKs and NFATc1 signaling pathways and could potentially be lead compounds for the prevention or treatment of osteolytic bone diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seon-A Jang ◽  
Youn-Hwan Hwang ◽  
Hyun Yang ◽  
Jin Ah Ryuk ◽  
Taesoo Kim ◽  
...  

Mentha arvensis L., is an aromatic herb that belongs to the Lamiaceae family and is widely used in medicinal applications, essential oil applications, and food flavoring. The extract of M. arvensis has been reported to exert sedative-hypnotic, anti-inflammatory, anti-fungal, and anti-bacterial effects. However, its effects on bone metabolism have not yet been studied. Here, we investigated the effects of the water extract of M. arvensis (WEMA) on osteoclast formation in vitro and bone loss in an ovariectomized mouse model. We found that WEMA inhibited osteoclast differentiation by directly acting on osteoclast precursor cells. WEMA inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced the expression of cellular oncogene fos (c-Fos) and nuclear factor of activated T cells c1 (NFATc1), crucial transcription factors for osteoclast differentiation, by suppressing RANKL-induced activation of early signaling pathways such as those of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB). In addition, oral administration of WEMA suppressed ovariectomy-induced trabecular bone loss in mice. We additionally identified phytochemicals in WEMA that are known to have anti-osteoclastogenic or anti-osteoporotic properties. Collectively, these results suggest that WEMA is a promising herbal candidate that can be used to prevent or treat postmenopausal osteoporosis.


Nutrients ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 901 ◽  
Author(s):  
Youn-Hwan Hwang ◽  
Hyunil Ha ◽  
Rajeong Kim ◽  
Chang-Won Cho ◽  
Young-Ran Song ◽  
...  

Persimmon (Diospyros kaki L.f.) leaves have traditionally been used as a phytomedicine, in health beverages to treat cardiovascular and respiratory disease and to promote maternal health in East Asia. In particular, polysaccharides from persimmon are known to have anti-coagulant, anti-oxidant, and immune-stimulatory activities. However, their beneficial effects against osteoporosis have not been reported. In the present study, we investigated the anti-osteoporotic effects of polysaccharides from persimmon leaves (PLE0) using an in vivo model of ovariectomy (OVX)-induced bone loss and an in vitro system of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. In the OVX mouse model, PLE0 remarkably improved OVX-induced trabecular bone loss by suppressing osteoclast activity. In primary bone marrow-derived macrophages (BMMs), PLE0 dose-dependently inhibited osteoclast differentiation. In addition, PLE0 down-regulated RANKL-induced activation of mitogen-activated protein kinases (MAPKs) such as p38, ERK, and JNK resulting in suppression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) expression. Our results indicate that PLE0 has anti-osteoporotic effects in OVX-induced bone loss via inhibition of osteoclast differentiation. Taken together, PLE0 from persimmon may prevent postmenopausal bone loss and osteoporotic bone fragility.


Sign in / Sign up

Export Citation Format

Share Document