Progenitor Cells in Healthy and Osteoarthritic Human Cartilage Have Extensive Culture Expansion Capacity while Retaining Chondrogenic Properties

Cartilage ◽  
2021 ◽  
pp. 194760352110596
Author(s):  
M. Rikkers ◽  
J.V. Korpershoek ◽  
R. Levato ◽  
J. Malda ◽  
L.A. Vonk

Objective Articular cartilage-derived progenitor cells (ACPCs) are a potential new cell source for cartilage repair. This study aims to characterize endogenous ACPCs from healthy and osteoarthritic (OA) cartilage, evaluate their potential for cartilage regeneration, and compare this to cartilage formation by chondrocytes. Design ACPCs were isolated from full-thickness healthy and OA human cartilage and separated from the total cell population by clonal growth after differential adhesion to fibronectin. ACPCs were characterized by growth kinetics, multilineage differentiation, and surface marker expression. Chondrogenic redifferentiation of ACPCs was compared with chondrocytes in pellet cultures. Pellets were assessed for cartilage-like matrix production by (immuno)histochemistry, quantitative analyses for glycosaminoglycans and DNA content, and expression of chondrogenic and hypertrophic genes. Results Healthy and OA ACPCs were successfully differentiated toward the adipogenic and chondrogenic lineage, but failed to produce calcified matrix when exposed to osteogenic induction media. Both ACPC populations met the criteria for cell surface marker expression of mesenchymal stromal cells (MSCs). Healthy ACPCs cultured in pellets deposited extracellular matrix containing proteoglycans and type II collagen, devoid of type I collagen. Gene expression of hypertrophic marker type X collagen was lower in healthy ACPC pellets compared with OA pellets. Conclusions This study provides further insight into the ACPC population in healthy and OA human articular cartilage. ACPCs show similarities to MSCs, yet do not produce calcified matrix under well-established osteogenic culture conditions. Due to extensive proliferative potential and chondrogenic capacity, ACPCs show potential for cartilage regeneration and possibly for clinical application, as a promising alternative to MSCs or chondrocytes.

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82403 ◽  
Author(s):  
Annica Pontén ◽  
Stuart Walsh ◽  
Daniela Malan ◽  
Xiaojie Xian ◽  
Susanne Schéele ◽  
...  

2019 ◽  
Vol 26 (2) ◽  
pp. 84-96
Author(s):  
María Isabel Mendoza-Cabrera ◽  
Rosa-Elena Navarro-Hernández ◽  
Anne Santerre ◽  
Pablo Cesar Ortiz-Lazareno ◽  
Ana Laura Pereira-Suárez ◽  
...  

In pregnancy, maternal monocytes and macrophages acquire a specific phenotype that enables them to maintain immune tolerance and facilitate hormone–immune cell interactions, which are necessary for gestational progression. The aim of this study was to determine the effect of pregnancy hormone mixtures of the first and third trimesters on both resting and activated monocytes and macrophages. Pregnancy hormone levels (cortisol, estradiol, progesterone, and prolactin) were quantified at the first and third trimesters. The average of the levels obtained was used to prepare two mixtures of synthetic hormones: low and high. These mixtures were then used to stimulate THP-1 monocytes and macrophages, resting or activated with LPS. Cytokine production in the culture supernatants and surface marker expression (CD14, CD86, and CD163) were evaluated by ELISA and flow cytometry, respectively. We found that the hormones modulated the pro-inflammatory response of THP-1 cells, LPS-activated monocytes, and macrophages, inducing high levels of IL-10 and low levels of IL-8, IL-1-β, and IL-6. All hormone stimulation increased the CD163 receptor in both resting and LPS-activated monocytes and macrophages in a dose-independent manner, unlike CD14 and CD86. Pregnancy hormones promote the expression of the markers associated with the M2-like phenotype, modulating their pro-inflammatory response. This phenotype regulation by hormones could be a determinant in pregnancy.


1978 ◽  
Vol 176 (3) ◽  
pp. 683-693 ◽  
Author(s):  
M T Bayliss ◽  
S Y Ali

1. Analysis of the purified proteoglycans extracted from normal human articular cartilage with 4M-guanidinium chloride showed that there was an age-related increase in their content of protein and keratan sulphate. 2. The hydrodynamic size of the dissociated proteoglycans also decreased with advancing age, but there was little change in the proportion that could aggregate. 3. Results suggested that some extracts of aged-human cartilage had an increased content of hyaluronic acid compared with specimens from younger patients. 4. Dissociated proteoglycans, from cartilage of all age groups, bind to hyaluronic acid and form aggregates in direct proportion to the hyaluronic acid concentration. 5. Electrophoretic heterogeneity of the dissociated proteoglycans was demonstrated on polyacrylamide/agarose gels. The number of proteoglycan species observed was also dependent on the age of the patient.


Sign in / Sign up

Export Citation Format

Share Document