scholarly journals Color stability and degree of conversion of a novel dibenzoyl germanium derivative containing photo-polymerized resin luting cement

2020 ◽  
Vol 18 ◽  
pp. 228080002091732 ◽  
Author(s):  
Fahad Alkhudhairy ◽  
Fahim Vohra ◽  
Mustafa Naseem ◽  
Mosa Mohammed Owais ◽  
Abdulmajeed H Bin Amer ◽  
...  

Aim: To compare the color stability and degree of conversion (DC) of a resin cement containing a dibenzoyl germanium derivative photo-initiator (Variolink Esthetic) to resin cements containing conventional luting agents. Materials and Method: Spectrophotometry and Fourier transform infrared spectroscopy (FTIR) were used to compare the color stability and DC, respectively, of Variolink Esthetic compared to Calibra, Variolink-N, and NX3 resin cements. Ten specimens (1 × 2 mm2) of each resin cement were photo-polymerized and then subjected to color stability assessments. In addition, 30 samples of each of the four resin cements were prepared and then immersed in three staining solutions (tea, coffee, and distilled water) for two weeks. Changes in color for the immersed versus non-immersed specimens (control specimens) were determined by comparing ΔL (lightness), Δa, and Δb (color components), and an overall ΔE (color difference) obtained from spectrophotometry assays. One-way analysis of variance and a multiple comparison test (Tukey’s test) were used to analyze color stability and DC data. NX3 and Variolink Esthetic resin cements exhibited significantly lower values compared to the dual cured resin cements (Variolink-N and Calibra). Results: The highest DC values were observed among the photo-polymerized samples of Variolink Esthetic (87.18 ± 2.90%), while the lowest DC values were observed among the Variolink-N samples (44.55 ± 4.33%). Conclusion: The resin cement, Variolink Esthetic, containing a novel dibenzoyl germanium derivative photo-initiator exhibited superior color stability ( p < 0.05) and a higher DC than other resin cements containing conventional luting agents in an in vitro setting.

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Caroline de Freitas Jorge ◽  
Sandro Basso Bitencourt ◽  
Letícia Cerri Mazza ◽  
Marcio Campaner ◽  
Juliana Lujan Brunetto ◽  
...  

Para alcançar a estética em dentes anteriores deve-se ter conhecimento de diversas técnicas e principalmente fazer a escolha correta dos materiais. As cerâmicas odontológicas estão cada vez mais presentes nas restaurações, visto que possuem ótimas propriedades ópticas e mecânicas. Assim, o objetivo deste estudo foi proporcionar a estética em dentes anteriores com diferentes subtratos através de uma prótese fixa metal-free. Paciente do gênero masculino, 38 anos, procurou atendimento queixando-se da estética do seu sorriso. No exame clínico foi observada uma coroa total metalocerâmica no elemento 21 e facetas de resina composta nos elementos 11,12 e 22, todas com estética insatisfatória. O dente 21 apresentava um núcleo metálico fundido adequado e os dentes 12 e 22 com tratamentos endodônticos. Foi proposta a instalação de pinos de fibra de vidro nos dentes 12 e 22. Além, da confecção de coroas totais metais-free em dissilicato de lítio nos quatro incisivos superiores com o sistema e-max ceram. O resultado final estético e funcional foi aprovado pelo paciente e pelos profissionais envolvidos.Descritores: Estética Dentária; Cerâmica; Reabilitação Bucal.ReferênciasOkida RC, De Moura AP, Franco LM, Salomão FM, Rahal S, Machado LS, Okida DSS. A utilização do DSD (Digital Smile Design) para a otimização da estética dental. Rev Odontol Araçatuba 2017;38(3):9-14.Sabatini C. Color stability behavior of methacrylate-based resin composites polymerized with light-emitting diodes and quartz-tungsten-halogen. Oper Dent. 2015;40(3):71-81.Wang   X,  Huyang   G,  Palagummi   SV,  Liu  X, Skrtic D, Beauchamp C et al. High performance dental resin composites withhydrolytically stable monomers. Dent Mater. 2018;34(2):228-37.Yazici AR, Celik C, Dayangaç B, Ozgünaltay G. The effect of curing units and staining solutions on the color stability of resin composites. Oper Dent. 2007; 32(6):616-22.Aguiar EMG, Rodrigues RB, Lopes CCA, Silveira Júnior CD, Soares CJ, Novais VR. Diferentes sistemas cerâmicos na reabilitação oral: relato de caso clínico. Rev Odontol Bras Central. 2016;25(72):31-6.Mazaro JVQ, Zavanelli AC, Pellizzer EP, Verri FR, Falcón-Antennucci RM. Considerações clínicas para a restauração da região anterior com facetas laminadas. Rev Odontol Araçatuba. 2009;30(1):51-4.Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater. 2011;27(1):97-108.Rossato DM, Saade EG, Saad JRC, Porto-Neto ST. Coroas estéticas anteriores em cerâmica metal-free: relato de caso clínico. Rev Sul-Bras Odontol. 2010;7(4):494-98.Lanza MDS, Andreeta MRB, Pegoraro TA, Pegoraro LF, Carvalho RM. Influence of curing protocol and ceramic composition on the degree of conversion of resin cement. J Appl Oral Sci. 2017;25(6):700-7.Soares PFB, Siqueira JM, Carvalho VF, Bicalho AA, Soares CJ. Contenção interdentária empregando fibra de vidro e resina composta: Relato de caso e acompanhamento de 14 anos. Rev Odontol Bras Central. 2016;25(73):80-3.Martinez-Insua A, da Silva L, Rilo B, Santana U. Comparison of the fracture resistances of pulpless teeth restored with a cast post and core or carbon-fiber post with a composite core. J Prosthet Dent. 1998;80(5):527-32.Rocha IJPB, Silva LDR, de Santa Maria SL, Oliveira DP, Porfírio Z. Análise de dois métodos de desinfecção de condutos radiculares após preparo para pinos: proposta de protocolo protético: estudo in vitro. Rev Odontol UNESP. 2017;46(4):189-95.Dede DÖ, Ceylan G, Yilmaz B. Effect of brand and shade of resin cements on the final color of lithium disilicate ceramic. J Prosthet Dent. 2017;117(4):539-44.Lopes Cde C, Rodrigues RB, Silva AL, Simamoto Júnior PC, Soares CJ, Novais VR. Degree of conversion and mechanical properties of resin cements cured through different all-ceramic systems. Braz Dent J. 2015;26(5):484-89.Martins FV, Vasques WF, Fonseca EM. How the variations of the thickness in ceramic restorations of lithium disilicate and the use of different photopolymerizers influence the degree of conversion of the resin cements: a systematic review and meta‐analysis. J Prosthodont. 2019;28(1):e395-403.Turp V, Turkoglu P, Sen D. Influence of monolithic lithium disilicate and zirconia thickness on polymerization efficiency of dual‐cure resin cements. J Esthet Restor Dent. 2018;30(4):360-68.Tavarez RR, Gonçalves LM, Dias AP, Dias AC, Malheiros AS, Silva AC. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: a case report. J Int Oral Health. 2014;6(3):90-2.Vaz EC, Vaz MM, de Torres ÉM, de Souza JB, Barata TDJE, Lopes LG. Resin cement: correspondence with try in paste and influence on the immediate final color of veneers. J Prosthodont. 2019;28(1):e74-81.Ladha K, Verma M. Conventional and contemporary luting cements: an overview. J Indian Prosthodont Soc. 2010;10(2):79-88.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Linah M. Ashy ◽  
Adnan Al-Mutairi ◽  
Tariq Al-Otaibi ◽  
Lulwa Al-Turki

Abstract Background High-translucency monolithic zirconia were developed to combine the esthetics of all ceramic restorations with the strength properties of zirconia. The purpose of this study was to compare the color stability of high-translucency monolithic zirconia ceramics with lithium disilicate luted using light-cure versus dual-cure resin cements following thermocyclic aging. Methods Forty specimens, each composed of 10 × 10 × 1 mm ceramic slice luted to dentin surface of an extracted tooth, were prepared and assigned into four groups (n = 10) as follows; LiDi/LC: lithium disilicate luted by light-cure resin cement; LiDi/DC: lithium disilicate luted by dual-cure resin cement; Zr/LC: zirconia luted by light-cure resin cement; and Zr/DC: zirconia luted by dual-cure resin cement. Color analysis of the specimens was performed before and after 3000 thermal cycles by means of spectrophotometry. The CIE L*a*b* values of the specimens were measured, and data were analyzed statistically at a significance value of p < 0.05. Results Thermocycling resulted in a significant change in color coordinates of specimens with an overall ΔE = 3.59 ± 1.60, but there was no statistically significant difference in the color change value among all tested groups (P = 0.756). Conclusions At 1 mm restoration thickness, the color stability of high-translucency monolithic lithium disilicate and zirconia ceramics were not significantly different irrespective of the cement type used. Clinical implication Understanding the difference in color stability of dental ceramics may help in determining long-term esthetic result.


2016 ◽  
Vol 95 (13) ◽  
pp. 1487-1493 ◽  
Author(s):  
N. Hirose ◽  
R. Kitagawa ◽  
H. Kitagawa ◽  
H. Maezono ◽  
A. Mine ◽  
...  

An experimental cavity disinfectant (ACC) that is intended to be used for various direct and indirect restorations was prepared by adding an antibacterial monomer 12-methacryloyloxydodecylpyridinum bromide (MDPB) at 5% into 80% ethanol. The antibacterial effectiveness of ACC and its influences on the bonding abilities of resin cements were investigated. To examine the antibacterial activity of unpolymerized MDPB, the minimum inhibitory and bactericidal concentrations (MIC and MBC) were determined for Streptococcus mutans, Lactobacillus casei, Actinomyces naeslundii, Parvimonas micra, Enterococcus faecalis, Fusobacterium nucleatum, and Porphyromonas gingivalis. Antibacterial activities of ACC and the commercial cavity disinfectant containing 2% chlorhexidine and ethanol (CPS) were evaluated by agar disk diffusion tests through 7 bacterial species and by MIC and MBC measurement for S. mutans. The effects of ACC and CPS to kill bacteria in dentinal tubules were compared with an S. mutans–infected dentin model. Shear bond strength tests were used to examine the influences of ACC on the dentin-bonding abilities of a self-adhesive resin cement and a dual-cure resin cement used with a primer. Unpolymerized MDPB showed strong antibacterial activity against 7 oral bacteria. ACC produced inhibition zones against all bacterial species similar to CPS. For ACC and CPS, the MIC value for S. mutans was identical, and the MBC was similar with only a 1-step dilution difference (1:2). Treatment of infected dentin with ACC resulted in significantly greater bactericidal effects than CPS ( P < 0.05, analysis of variance and Tukey’s honest significant difference test). ACC showed no negative influences on the bonding abilities to dentin for both resin cements, while CPS reduced the bond strength of the self-adhesive resin cement ( P < 0.05). This study clarified that the experimental cavity disinfectant containing 5% MDPB is more effective in vitro than the commercially available chlorhexidine solution to eradicate bacteria in dentin, without causing any adverse influences on the bonding abilities of resinous luting cements.


2018 ◽  
Vol 43 (6) ◽  
pp. E280-E287 ◽  
Author(s):  
JS Shim ◽  
SH Han ◽  
N Jha ◽  
ST Hwang ◽  
W Ahn ◽  
...  

SUMMARY This study investigated the effects of irradiance and exposure duration on dual-cured resin cements irradiated through ceramic restorative materials. A single light-curing unit was calibrated to three different irradiances (500, 1000, and 1500 mW/cm2) and irradiated to three different attenuating materials (transparent acryl, lithium disilicate, zirconia) with 1-mm thicknesses for 20 or 60 seconds. The changes in irradiance and temperature were measured with a radiometer (or digital thermometer) under the attenuating materials. The degree of conversion (DC) of dual-cure resin cement after irradiation at different irradiances and exposure durations was measured with Fourier transform near infrared spectroscopy. Two-way analysis of variance revealed that irradiance (p&lt;0.001) and exposure duration (p&lt;0.001) significantly affected temperature and DC. All groups showed higher DCs with increased exposure times (p&lt;0.05), but there were no statistically significant differences between the groups irradiated with 1000 mW/cm2 and 1500 mW/cm2 (p&gt;0.05). Higher-intensity irradiances yielded higher temperatures (p&lt;0.05), but exposure time did not affect temperature when materials were irradiated at 500 mW/cm2 (p&gt;0.05).


2021 ◽  
Vol 46 (1) ◽  
pp. 107-115
Author(s):  
DM De Paula ◽  
AD Loguercio ◽  
A Reis ◽  
S Sauro ◽  
AH Alves ◽  
...  

Clinical Relevance Use of zirconia primers with a low pH and a high acidic monomer concentration should be employed in combination with dual-cure resin cements that are less sensitive to an acidic environment. Primers with lower 10-MDP concentrations attain better outcomes. SUMMARY Objective: To assess the effects of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) included in experimental ceramic primers on the degree of conversion (DC) and microshear bond strength (μSBS) of a dual-cure resin cement, and on the acidity neutralization potential of zirconia (ZrO2) in comparison to hydroxyapatite (HAp). Methods: Experimental ceramic primers were formulated using 5 wt%, 10 wt%, 20 wt%, or 40 wt% 10-MDP as an acidic functional monomer and camphorquinone (CQ)/amine or 1-phenyl-1,2-propanedione (PPD) as a photoinitiator system. Clearfil Ceramic Primer (Kuraray Dental, Tokyo, Japan) was used as the commercial control. Micro-Raman spectroscopy was used to assess the DC of uncured and light-cured resin cements applied onto primer-treated ZrO2 surfaces. The μSBS and pH of primers were assayed in a universal testing machine and by a digital pH meter (Tec-3MP; Tecnal, Piracicaba, Brazil), respectively. Statistical analysis was performed by one-way analysis of variance (ANOVA) and Tukey’s test (p&lt;0.05). Results: DC was not affected until a concentration of 10% 10-MDP in CQ primer and 5% 10-MDP in PPD primer was reached, when compared with the positive control (p&gt;0.05). Groups 10-MDP 5% in CQ and PPD primers showed the highest μSBS compared with the positive control (p&gt;0.05); however, higher concentrations of 10-MDP induced significant DC and μSBS reduction (p&lt;0.05). HAp neutralized 10-MDP primers, but ZrO2 provided higher acidity to the primers’ pH. Conclusion: 10-MDP monomer should be used in low concentrations in ZrO2 primers to avoid reduction of the polymerization and bond strength of resin cement.


2019 ◽  
Vol 13 (1) ◽  
pp. 61-67
Author(s):  
Mehdi Daneshpooy ◽  
Fatemeh Pournaghi Azar ◽  
Parnian Alizade Oskoee ◽  
Mahmoud Bahari ◽  
Saeede Asdagh ◽  
...  

Background. The current study aimed at identifying the color agreement between try-in pastes and the respective resin cements and investigated the effect of thickness and regions of Ultra-Translucent Multilayered Zirconia Veneers. Methods. A total of 90 cubic zirconia discs were prepared at two different thicknesses (0.5 mm and 0.7 mm) (n=45) in five groups in terms of the shade of the try-in paste and resin cement as follows: Universal, Clear, Brown, White and Opaque. Try-in paste and the respective resin cement were applied between the specimens and composite substrate, respectively, and colorimetric evaluation was carried out using CIE-Lab system. For each specimen, ΔE between the try-in paste and cement was calculated. Data were analyzed with SPSS 17 using Multifactor ANOVA (P<0.05). Results. Multifactor ANOVA results showed that ΔE values were significantly affected by the resin cement shade and the thickness of ceramic veneer (P<0.05). The results showed better shade agreement between the try-in paste and the respective resin cement with thicker ceramic veneers. The results of Tukey HSD revealed that ΔE values for the Clear, Universal and Brown shades were less than those of the White and Opaque shades. Lighter shades exhibited better agreement between the try-in paste and the respective resin cement. Conclusion. Perceptible color difference was found between the try-in pastes and the respective resin cement in most colors investigated. Although, the agreement of the try-in pastes and the respective resin cement was affected by the thickness of zirconia veneers, the different regions of multilayered ultra-translucent zirconia ceramic showed no significant effect.


Medicina ◽  
2019 ◽  
Vol 55 (11) ◽  
pp. 749 ◽  
Author(s):  
Satheesh B. Haralur ◽  
Noura Raqe S. Alqahtani ◽  
Fatimah Alhassan Mujayri

Background and aim: All-ceramic prosthesis is widely used in modern dental practice because of its improved physico-mechanical and optical properties. These restorations are exposed to coloring agents from various nutrition and beverages in the oral cavity. Long-term color stability is critical for the success of these restorative materials. The purpose of this in vitro study was to assess the effect of common beverages and mouthwash on the color stability of lithium disilicate (LD), monolithic zirconia (MZ) and bilayer zirconia (BZ) surfaces. Material and methods: Thirty disc-shaped specimens from each material were fabricated; each group was subdivided (n = 10) according to coffee, green tea and chlorhexidine immersion solutions. The baseline color of ceramic discs was recorded according to the CIE L*a*b* system with a portable spectrophotometer. The second measurement was recorded after 3000 thermocycling and immersion in coloring agents for 7 days. The mean color difference was calculated and data were compared with Kruskal-Wallis and Mann-Whitney post hoc tests (0.05). Results: ΔE values for LD with the immersion of coffee, tea, and Chlorhexidine gluconate (CHG) were 1.78, 2.241 and 1.58, respectively. Corresponding ΔE values for MZ were 5.60, 5.19, and 4.86; marginally higher than the clinically acceptable level of 3.5. Meanwhile, BZ showed better color stability compared to MZ with ΔE values of 4.22, 2.11 and 1.43. Conclusion: Among the ceramics evaluated, LD ceramic was found to be more color stable, while MZ ceramics displayed a higher susceptibility to discoloration. MZ and BZ ceramic colors were significantly altered with coffee immersion, while LD ceramics were more affected by green tea.


2019 ◽  
Vol 18 (4) ◽  
pp. 764-772
Author(s):  
Asa Yazdani Fard ◽  
Zuryati Ab Ghani ◽  
Zaihan Ariffin ◽  
Dasmawati Mohamad

Background: Studies on microleakage of Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) crowns are abundant. However many of them are inconclusive, especially those using self adhesive cements. Aims: To compare the microleakage between CAD/CAM crowns milled out of feldspathic ceramic and resin nano ceramics, cemented with three resin cements. Materials and Methods: Crown preparation was made on 54 extracted human premolars. Impressions were captured optically using CEREC 3D machine intraoral camera, and crowns were milled from feldspathic ceramic (CEREC® Blocs PC, VITA) and resin nano ceramic (Lava™ Ultimate CAD/CAM Restorative, 3M ESPE) blocks. The crowns were then cemented with three cements (n = 9); RelyX™ U200 Self-Adhesive Resin Cement (3M ESPE); NX3 Nexus ® cement with two-step etch-and-rinse adhesive (Kerr Corporation) or three/multistep etch-and-rinse resin cement, Variolink® II/Syntac Classic (Ivoclar Vivadent). The specimens were kept in water for 24 hours, thermocycled, and then soaked in methylene blue dye for 24 hours, before being sectioned mesiodistally. Microleakage was assessed using a fivepoint scale using stereomicroscope. Statistical analysis of the data was carried out using ONEWay ANOVA. Results: CEREC® Blocs PC crowns showed significantly less microleakage (p< 0.001) compared to Lava™ Ultimate. RelyX™ U200 showed significantly lower microleakage (p< 0.001) compared to other cements. Combination of Lava™ Ultimate crown cemented with RelyX™ U200 showed the least microleakage (p< 0.001). Conclusions: The microleakage scores were affected by the types of crown and cements. Bangladesh Journal of Medical Science Vol.18(4) 2019 p.764-772


2016 ◽  
Vol 27 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Francisca Daniele Jardilino Silami ◽  
Rafaella Tonani ◽  
Carla Cecilia Alandia-Román ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza

Abstract The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness.


2016 ◽  
Vol 41 (3) ◽  
pp. 327-338 ◽  
Author(s):  
T Takamizawa ◽  
WW Barkmeier ◽  
MA Latta ◽  
TP Berry ◽  
A Tsujimoto ◽  
...  

SUMMARY One of the primary areas of concern with luting agents is marginal gap erosion and attrition. The purpose of this laboratory study was to evaluate bulk and marginal slit (gap) generalized wear of self-adhesive resin cements. Three self-adhesive resin cements were used in this study: G-CEM LinkAce (LA), Maxcem Elite (ME), and RelyX Unicem2 Automix (RU). A custom stainless-steel fixture with a cavity 4.5 mm in diameter and 4 mm deep was used for simulated generalized (bulk) wear. For simulated marginal gap wear, a two-piece stainless-steel custom fixture was designed with a slit (gap) 300 μm wide and 3 mm in length. For both wear models, 20 specimens each for each of the three adhesive cements were made for both light-cure and chemical-cure techniques. The cured cements were polished with a series of carbide papers to a 4000-grit surface and subjected to 100,000 cycles using the slit (gap) wear model and 400,000 cycles for generalized (bulk) wear in a Leinfelder-Suzuki (Alabama machine) wear simulator (maximum load of 78.5 N). Flat-ended stainless-steel antagonists were used in a water slurry of poly(methylmethacrylate) beads for simulation of generalized contact-free area wear with both wear models. Before and after the wear challenges, the specimens were profiled with a Proscan 2100 noncontact profilometer, and wear (volume loss [VL] and mean facet depth [FD]) was determined using AnSur 3D software. Two-way analysis of variance (ANOVA) and Tukey post hoc tests were used for data analysis for the two wear models. Scanning electron microscopy (SEM) was used to examine polished surfaces of the resin cements and the worn surfaces after the wear challenges. The two-way ANOVA of VL using the generalized (bulk) wear model showed a significant effect among the three resin cement materials for the factor of resin cement (p&lt;0.001) and the interaction of the cement and cure method (p&lt;0.001), but not for the cure method (p=0.465). The two-way ANOVA for FD also found a significant difference for the factor of resin cement (p&lt;0.001) and the interaction of the resin cement and cure method (p&lt;0.001), but not for the cure method (p=0.277). The simulated generalized (bulk) wear for the light-cure groups was as follows: VL (mm3): RU 0.631 (0.094), LA 0.692 (0.112), and ME 1.046 (0.141) and FD (μm): RU 43.6 (6.5), LA 47.0 (7.7), and ME 72.5 (9.9). The simulated generalized (bulk) wear for the chemical-cure groups was as follows: VL (mm3): LA 0.741 (0.105), RU 1.231 (0.234), and ME 1.305 (0.143) and FD (μm): LA 50.7 (7.2), RU 84.5 (16.1), and ME 91.7 (10.2). Simulated wear using the slit (gap) model for the light-cure groups was as follows: VL (mm3): RU 0.030 (0.006), LA 0.031 (0.006), and ME 0.041 (0.009) and FD (μm): RU 49.6 (5.7), LA 57.2 (8.4), and ME 70.9 (10.7). The wear values for the chemical-cure slit (gap) groups were as follows: VL (mm3): LA 0.031 (0.004), ME 0.038 (0.007), and RU 0.045 (0.009) and FD (μm): LA 53.9 (6.7), ME 63.5 (9.1), and RU 74.2 (12.9). Pearson correlation tests revealed a strong relationship between the two wear models for the light-cure groups and a good relationship for the chemical-cure groups. The observations using SEM showed differences in filler particle shape and size among the cements and the resultant effect of the wear challenges. The worn surfaces of each cement were essentially the same for both light-cure and chemical-cure methods. The bulk wear model and new slit (gap) model for evaluation of simulated generalized wear of luting agents demonstrated significant differences (p&lt;0.05) in relative wear among three self-adhesive resin cements and between visible light- and chemical-cure techniques.


Sign in / Sign up

Export Citation Format

Share Document