scholarly journals Can the Open Stance Forehand Increase the Risk of Hip Injuries in Tennis Players?

2020 ◽  
Vol 8 (12) ◽  
pp. 232596712096629
Author(s):  
Caroline Martin ◽  
Anthony Sorel ◽  
Pierre Touzard ◽  
Benoit Bideau ◽  
Ronan Gaborit ◽  
...  

Background: The open stance forehand has been hypothesized by tennis experts (coaches, scientists, and clinicians) to be more traumatic than the neutral stance forehand as regards hip injuries in tennis. However, the influence of the forehand stance (open or neutral) on hip kinematics and loading has not been assessed. Purpose: To compare the kinematics and kinetics at the hip joint during 3 common forehand stances (attacking neutral stance [ANS], attacking open stance [AOS], defensive open stance [DOS]) in advanced tennis players to determine whether the open stance forehand induces higher hip loading. Study Design: Descriptive laboratory study. Methods: The ANS, AOS, and DOS forehand strokes of 8 advanced right-handed tennis players were recorded with an optoelectronic motion capture system. The flexion-extension, abduction-adduction, and external-internal rotation angles as well as intersegmental forces and torques of the right hip were calculated using inverse dynamics. Results: The DOS demonstrated significantly higher values than both the ANS and AOS for anterior ( P < .001), medial ( P < .001), and distractive ( P < .001) forces as well as extension ( P = .004), abduction ( P < .001), and external rotation ( P < .001) torques. The AOS showed higher distractive forces than the ANS ( P = .048). The DOS showed more extreme angles of hip flexion ( P < .001), abduction ( P < .001), and external rotation ( P = .010). Conclusion: The findings of this study imply that the DOS increased hip joint angles and loading, thus potentially increasing the risk of hip overuse injuries. The DOS-induced hip motion could put players at a higher risk of posterior-superior hip impingement compared with the ANS and AOS. Clinical Relevance: Coaches and clinicians with players who have experienced hip pain or sustained injuries should encourage them to use a more neutral stance and develop a more aggressive playing style to avoid the DOS, during which hip motion and loading are more extreme.

1999 ◽  
Vol 4 (1) ◽  
pp. 6-7
Author(s):  
James J. Mangraviti

Abstract The accurate measurement of hip motion is critical when one rates impairments of this joint, makes an initial diagnosis, assesses progression over time, and evaluates treatment outcome. The hip permits all motions typical of a ball-and-socket joint. The hip sacrifices some motion but gains stability and strength. Figures 52 to 54 in AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, illustrate techniques for measuring hip flexion, loss of extension, abduction, adduction, and external and internal rotation. Figure 53 in the AMA Guides, Fourth Edition, illustrates neutral, abducted, and adducted positions of the hip and proper alignment of the goniometer arms, and Figure 52 illustrates use of a goniometer to measure flexion of the right hip. In terms of impairment rating, hip extension (at least any beyond neutral) is irrelevant, and the AMA Guides contains no figures describing its measurement. Figure 54, Measuring Internal and External Hip Rotation, demonstrates proper positioning and measurement techniques for rotary movements of this joint. The difference between measured and actual hip rotation probably is minimal and is irrelevant for impairment rating. The normal internal rotation varies from 30° to 40°, and the external rotation ranges from 40° to 60°.


2014 ◽  
Vol 30 (4) ◽  
pp. 563-573 ◽  
Author(s):  
Yoichi Iino ◽  
Atsushi Fukushima ◽  
Takeji Kojima

The purpose of this study was to investigate the relevance of hip joint angles to the production of the pelvic rotation torque in fast-pitch softball hitting and to examine the effect of ball height on this production. Thirteen advanced female softball players hit stationary balls at three different heights: high, middle, and low. The pelvic rotation torque, defined as the torque acting on the pelvis through the hip joints about the pelvic superior–inferior axis, was determined from the kinematic and force plate data using inverse dynamics. Irrespective of the ball heights, the rear hip extension, rear hip external rotation, front hip adduction, and front hip flexion torques contributed to the production of pelvic rotation torque. Although the contributions of the adduction and external rotation torques at each hip joint were significantly different among the ball heights, the contributions of the front and rear hip joint torques were similar among the three ball heights owing to cancelation of the two torque components. The timings of the peaks of the hip joint torque components were significantly different, suggesting that softball hitters may need to adjust the timings of the torque exertions fairly precisely to rotate the upper body effectively.


2007 ◽  
Vol 35 (8) ◽  
pp. 1371-1376 ◽  
Author(s):  
Todd S. Ellenbecker ◽  
Gail A. Ellenbecker ◽  
E. Paul Roetert ◽  
Rogerio Teixeira Silva ◽  
Greg Keuter ◽  
...  

Background Repetitive loading to the hip joint in athletes has been reported as a factor in the development of degenerative joint disease and intra-articular injury. Little information is available on the bilateral symmetry of hip rotational measures in unilaterally dominant upper extremity athletes. Hypothesis Side-to-side differences in hip joint range of motion may be present because of asymmetrical loading in the lower extremities of elite tennis players and professional baseball pitchers. Study Design Cohort (cross-sectional) study (prevalence); Level of evidence, 1. Methods Descriptive measures of hip internal and external rotation active range of motion were taken in the prone position of 64 male and 83 female elite tennis players and 101 male professional baseball pitchers using digital photos and computerized angle calculation software. Bilateral differences in active range of motion between the dominant and nondominant hip were compared using paired t tests and Bonferroni correction for hip internal, external, and total rotation range of motion. A Pearson correlation test was used to test the relationship between years of competition and hip rotation active range of motion. Results No significant bilateral difference (P > .005) was measured for mean hip internal or external rotation for the elite tennis players or the professional baseball pitchers. An analysis of the number of subjects in each group with a bilateral difference in hip rotation greater than 10° identified 17% of the professional baseball pitchers with internal rotation differences and 42% with external rotation differences. Differences in the elite male tennis players occurred in only 15% of the players for internal rotation and 9% in external rotation. Female subjects had differences in 8% and 12% of the players for internal and external rotation, respectively. Statistical differences were found between the mean total arc of hip range of internal and external rotation in the elite tennis players with the dominant side being greater by a clinically insignificant mean value of 2.5°. Significantly less (P < .005) dominant hip internal rotation and less dominant and nondominant hip total rotation range of motion were found in the professional baseball pitchers compared with the elite male tennis players. Conclusion This study established typical range of motion patterns and identified bilaterally symmetric hip active range of motion rotation values in elite tennis players and professional baseball pitchers. Asymmetric hip joint rotational active range of motion encountered during clinical examination and screening may indicate abnormalities and would indicate the application of flexibility training, rehabilitation, and further evaluation.


2015 ◽  
Author(s):  
◽  
Zia ul Mustafa Rehman

Background There is a close biomechanical relationship that exists between the sacroiliac and hip joints. It is essential to have optimum hip range of motion originating from the pelvis in both the kicking and support limbs as both limbs play a role in achieving a high speed kicking velocity. Due to the strenuous activity of soccer players, both hip ranges of motion may be decreased, thus predisposing the player to injuries. This may also affect the kicking velocity. The effects of sacroiliac joint manipulation on hip range of motion and kicking velocity were investigated. Objectives The objective of this study was to determine the effect of ipsilateral sacroiliac joint manipulation versus contralateral sacroiliac joint manipulation on bilateral hip range of motion and kicking velocity. Methods There were three groups of twenty soccer players. The ipsilateral sacroiliac joint manipulation group, the contralateral sacroiliac joint manipulation group, and the sham laser intervention group. The case history, physical, regional, lumbar and hip exams were done in the Chiropractic Day Clinic. The hip ranges of motion were measured pre- and post- Chiropractic manipulation in all three groups on both limbs in the Fred Crookes Sports Centre (Durban University of Technology). Hip ranges of motion were measured by the Saunders (The Saunders Group, Chaska, MN) digital inclinometer. The kicking velocity of all players were measured pre- and post- manipulation by a speed sport radar gun (Bushnell Speedster Speed Gun; Bushnell Inc, Lenexa, KS). This was a purposive, investigational study trial where the data was reduced and analysed with the help of a statistician, using the statistical software SPSS version 20.0.The statistical aspect of the research encompassed the following: descriptive statistics used Fischer values, Eta tests, frequency, cross-tabulation tables and various types of graphs (bar charts, scatter graphs etc.); Inferential statistics used Pearson’s and/or Spearman’s correlations at a significance level of 0.05; testing of hypotheses used chi-square tests for nominal data and ordinal data at a level of significance of 0.05. Results The ipsilateral group showed statistically significant results for the right hip in flexion, extension, internal rotation and external rotation, as well as for extension, internal rotation and external rotation in the left hip. The contralateral group showed statistically significant results for the right hip in extension, internal rotation and external rotation, as well as for extension and internal rotation in the left hip. There was a statistically significant improvement in the kicking velocity of the ipsilateral and contralateral group after treatment. There was a strong association between the perception changes to the actual kicking velocity in the soccer players. There was a correlation between the change in hip range of motion and change in kicking velocity, however statistically it was not significant. Conclusion The manipulation of ipsilateral or contralateral sacroiliac joint has an effect on the right and left hip range of motion


Author(s):  
Yana V. Platonova ◽  
Valentina I. Syutina

Introduction. The statistics revealed during the literature analysis indicates the wide-spread of joint diseases worldwide, including hip diseases, and all human motor activity depends on the hip functioning. Limited mobility in the joint is caused by a sedentary lifestyle and the absence of movements with involved hip joint. The practice of conducting recreational aerobics classes with female students has shown the lack of girls’ proper attention to the mobility problem in the hip joints. Methods. 200 female students of 1–4 courses of Derzhavin Tambov State University, engaged in recreational aerobics, took part in the study of hip joint mobility. The study used tests to assess the degree of hip joint opening and to identify the presence of asymmetry when the legs are pulled to the sides. Results. There is a unidirectional tendency in the ability to perform motor action with the maximum amplitude of movement in the hip joints of female students of 1–4 courses. The thighs of the students open in the same way; there is no asymmetry between the right and left legs when opening. Conclusions. The study helped to draw up an overall balance and identify trends in the development of hip joint mobility in girls, to understand the causes leading to pelvic displacement and limited hip flexion amplitude, to expand the understanding of methods for assessing hip joint mobility and tests for detecting asymmetry when the legs are pulled to the sides.


2012 ◽  
Vol 28 (5) ◽  
pp. 511-519 ◽  
Author(s):  
Dominic James Farris ◽  
Erica Buckeridge ◽  
Grant Trewartha ◽  
Miranda Polly McGuigan

This study assessed the effects of orthotic heel lifts on Achilles tendon (AT) force and strain during running. Ten females ran barefoot over a force plate in three conditions: no heel lifts (NHL), with 12 mm heel lifts (12HL) and with 18 mm heel lifts (18HL). Kinematics for the right lower limb were collected (200 Hz). AT force was calculated from inverse dynamics. AT strain was determined from kinematics and ultrasound images of medial gastrocnemius (50 Hz). Peak AT strain was less for 18HL (5.5 ± 4.4%) than for NHL (7.4 ± 4.2%) (p = .029, effect size [ES] = 0.44) but not for 12HL (5.8 ± 4.8%) versus NHL (ES = 0.35). Peak AT force was significantly (p = .024, ES = 0.42) less for 18HL (2382 ± 717 N) than for NHL (2710 ± 830 N) but not for 12HL (2538 ± 823 N, ES = 0.21). The 18HL reduced ankle dorsiflexion but not flexion-extension ankle moments and increased the AT moment arm compared with NHL. Thus, 18HL reduced force and strain on the AT during running via a reduction in dorsiflexion, which lengthened the AT moment arm. Therefore, heel lifts could be used to reduce AT loading and strain during the rehabilitation of AT injuries.


Author(s):  
Vesa O Saikko

A three-axial, single-station hip joint simulator was designed and built for wear and friction studies on total hip prostheses. The design of the apparatus is described in detail. Continuous level walking is simulated. All three motion components, flexion-extension, abduction-adduction and internal-external rotation, are included. The motions are implemented electromechanically and the uniaxial load pneumatically. The load is measured continuously. For accurate measurement of wear, the apparatus has a loaded control joint, which also renders both the test and control joints self-centring, as they are loaded in series. The frictional torque of the test joint can be measured continuously throughout the wear test, which is an exceptional feature. Four tests of five million cycles each were completed using 32 mm diameter Co-Cr-Mo femoral heads and 5.6 mm thick, metal-backed, ultra-high molecular weight polyethylene acetabular cups as test specimens. Their wear and friction behaviour is described and discussed in relation to previous simulator studies and clinical observations. The lubricant was distilled water, maintained at body temperature. The wear of the cups was measured gravimetrically at intervals. The average wear rate was 3.9 mg/one million cycles, corresponding to 0.03 mm/year, and the average coefficient of friction was 0.01.


Author(s):  
Roman Michalik ◽  
Katrin Essing ◽  
Ben Rohof ◽  
Matthias Gatz ◽  
Filippo Migliorini ◽  
...  

Abstract Introduction Dislocations of the hip joint are a common and clinically relevant complication following total hip arthroplasty (THA). Hip-abduction braces are currently used following operative or non-operative treatment of THA dislocations to prevent re-dislocations. However, the clinical and biomechanical effectiveness of such braces is still controversial. Material and methods A total of 30 volunteers were measured during standing and during sitting up and down from a chair task wearing a hip brace set at 70°, 90° or no hip flexion limitation. Range of motion of the hip joint was measured in all directions by an inertial sensor system. Further it has been evaluated if the range of motion would be reduced by the additional use of an arthrodesis cushion. Results The use of a hip brace set up with flexion limitation did reduce hip ROM in all directions significantly compared to unhinged brace (p < 0.001–0.035). Performing the “sit down and stand-up task” the brace set up at 70° flexion limitation did reduce maximum hip flexion significantly (p = 0.008). However, in most cases the measured hip flexion angles were greater than the settings of the hip brace should have allowed. The additional use of a cushion can further limit hip motion while sitting up and down from a chair. Conclusion This study has demonstrated that hip-abduction braces reduce hip range of motion. However, we also found that to achieve a flexion limitation of the hip to 90°, the hip brace should be set at a 70° hip flexion limitation.


2021 ◽  
Vol 11 (15) ◽  
pp. 7077
Author(s):  
Joel Marouvo ◽  
Filipa Sousa ◽  
Orlando Fernandes ◽  
Maria António Castro ◽  
Szczepan Paszkiel

Background: Foot postural alignment has been associated with altered gait pattern. This study aims to investigate gait kinematic differences in flatfoot subjects’ regarding all lower limb segments compared to neutral foot subjects. Methods: A total of 31 participants were recruited (age: 23.26 yo ± 4.43; height: 1.70 m ± 0.98; weight: 75.14 kg ± 14.94). A total of 15 subjects were integrated into the flatfoot group, and the remaining 16 were placed in the neutral foot group. All of the particpants were screened using the Navicular Drop Test and Resting Calcaneal Stance Position test to characterize each group, and results were submitted to gait analysis using a MOCAP system. Results: Significant kinematic differences between groups were found for the ankle joint dorsiflexion, abduction, and internal and external rotation (p < 0.05). Additionally, significant differences were found for the knee flexion, extension, abduction, and external rotation peak values (p < 0.001). Significant differences were also found for the hip flexion, extension, external rotation, pelvis rotation values (p < 0.02). Several amplitude differences were found concerning ankle abduction/adduction, knee flexion/extension and abduction/adduction, hip flexion/extension and rotation, and pelvis rotation (p < 0.01). Conclusion: Flatfooted subjects showed kinematic changes in their gait patterns. The impact on this condition on locomotion biomechanical aspects is clinically essential, and 3D gait biomechanical analysis use could be advantageous in the early detection of health impairments related to foot posture.


2020 ◽  
pp. 1-9
Author(s):  
Alex Brun ◽  
Michelle A. Sandrey

Context: Joint mobilizations have been studied extensively in the literature for the glenohumeral joint and talocrural joint (ankle). Consequently, joint mobilizations have been established as an effective means of improving range of motion (ROM) within these joints. However, there is a lack of extant research to suggest these effects may apply within another critical joint in the body, the hip. Objective: To examine the immediate effects of hip joint mobilizations on hip ROM and functional outcomes. Secondarily, this study sought to examine the efficacy of a novel hip mobilization protocol. Design: A prospective exploratory study. Setting: Two research labs. Patients or Other Participants: The study included 19 active male (n = 8) and female (n = 11) college students (20.56 [1.5] y, 171.70 [8.6] cm, 72.23 [12.9] kg). Interventions: Bilateral hip mobilizations were administered with the use of a mobilization belt. Each participant received hip joint mobilization treatments once during 3 weekly sessions followed immediately by preintervention and postintervention testing/measurements. Testing for each participant occurred once per week, at the same time of day, for 3 consecutive weeks. Hip ROM was the first week, followed by modified Star Excursion Balance Test the second week and agility T test during the third week. Main Outcomes Measures: Pretest and posttest measurements included hip ROM for hip flexion, extension, abduction, adduction, internal and external rotation, as well as scores on the modified Star Excursion Balance Test (anterior, posterolateral, and posteromedial directions) and agility T test. Results: A significant effect for time was found for hip adduction, internal and external rotation ROM, as well as the posterolateral and posteromedial directions of the modified Star Excursion Balance Test. A separate main effect for both limbs was found for adduction and internal rotation ROM. Conclusion: Isolated immediate changes in ROM and functional outcomes were evident. Further evaluation is needed.


Sign in / Sign up

Export Citation Format

Share Document