Integration of Lead Discovery Tactics and the Evolution of the Lead Discovery Toolbox

2018 ◽  
Vol 23 (9) ◽  
pp. 881-897 ◽  
Author(s):  
Melanie Leveridge ◽  
Chun-Wa Chung ◽  
Jeffrey W. Gross ◽  
Christopher B. Phelps ◽  
Darren Green

There has been much debate around the success rates of various screening strategies to identify starting points for drug discovery. Although high-throughput target-based and phenotypic screening has been the focus of this debate, techniques such as fragment screening, virtual screening, and DNA-encoded library screening are also increasingly reported as a source of new chemical equity. Here, we provide examples in which integration of more than one screening approach has improved the campaign outcome and discuss how strengths and weaknesses of various methods can be used to build a complementary toolbox of approaches, giving researchers the greatest probability of successfully identifying leads. Among others, we highlight case studies for receptor-interacting serine/threonine-protein kinase 1 and the bromo- and extra-terminal domain family of bromodomains. In each example, the unique insight or chemistries individual approaches provided are described, emphasizing the synergy of information obtained from the various tactics employed and the particular question each tactic was employed to answer. We conclude with a short prospective discussing how screening strategies are evolving, what this screening toolbox might look like in the future, how to maximize success through integration of multiple tactics, and scenarios that drive selection of one combination of tactics over another.

2011 ◽  
Vol 17 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Thomas Ahrens ◽  
Andreas Bergner ◽  
David Sheppard ◽  
Doris Hafenbradl

For many novel epigenetics targets the chemical ligand space and structural information were limited until recently and are still largely unknown for some targets. Hit-finding campaigns are therefore dependent on large and chemically diverse libraries. In the specific case of the histone methyltransferase G9a, the authors have been able to apply an efficient process of intelligent selection of compounds for primary screening, rather than screening the full diverse deck of 900 000 compounds to identify hit compounds. A number of different virtual screening methods have been applied for the compound selection, and the results have been analyzed in the context of their individual success rates. For the primary screening of 2112 compounds, a FlashPlate assay format and full-length histone H3.1 substrate were employed. Validation of hit compounds was performed using the orthogonal fluorescence lifetime technology. Rated by purity and IC50 value, 18 compounds (0.9% of compound screening deck) were finally considered validated primary G9a hits. The hit-finding approach has led to novel chemotypes being identified, which can facilitate hit-to-lead projects. This study demonstrates the power of virtual screening technologies for novel, therapeutically relevant epigenetics protein targets.


Author(s):  
Shi-tang Ma ◽  
Ning Zhang ◽  
Ge Hong ◽  
Cheng-tao Feng ◽  
Sheng-wei Hong ◽  
...  

Background: Buyang Huanwu Tang (BYHWT) and relevant Traditional Chinese medicine (TCM) has its unique advantages in the treatment of cerebral ischemia. However, its pharmacological mechanism have not been fully explained. Objective: Base on the multi-component, also the entire disease network targets, the present study set out to identify major bioactive ingredients, key disease targets, and pathways of BYHWT against cerebral ischemia disease by systematic pharmacological methodology. Methods: Both the bioactive compounds from the BYHWT and the positive drugs against cerebral ischemia were fully investigated. The binding targets of the positive drugs were then obtained. A virtual screening protocol was then used to highlight the compound-target interaction. And network was constructed to visual the compound-target binding effect after docking analysis. Moreover,the targets enrichment analysis for biological processes and pathways were revealed to further explore the function of bio-targets protein gene and its role in the signal pathway. Results: A total of 382 active ingredients of the BYHWT and 23 candidate disease targets were identified. Virtual screening results indicated that multiple bioactive compounds targeted multiple proteins. Each compounds act on one or more targets. The mechanisms were linked to 20 signaling pathways, and the key mechanism was related to serotonergic synapse, calcium signaling pathway and camp signaling pathways. Conclusion: The present study explored the bioactive ingredients and mechanisms of BYHWT against cerebral ischemia by systematic pharmacological methodology. the novel methodology would provide a reference for the lead discovery of precursors, disease mechanism and material base for TCM.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Author(s):  
Pragya Nayak ◽  
Monica Kachroo

: A series of new heteroaryl thiazolidine-4-one derivatives were designed and subjected to in-silico prioritization using various virtual screening strategies. Two series of thiazolidinone derivatives were synthesized and screened for their in-vitro antitubercular, anticancer, antileishmanial and antibacterial (Staphylococcus aureus; Streptococcus pneumonia; Escherichia coli; Pseudomonas aeruginosa) activities. The compounds with electronegative substitutions exhibited positive antitubercular activity, the derivatives possessing a methyl substitution exhibited good inhibitory response against breast cancer cell line MCF-7 while the compounds possessing a hydrogen bond acceptor site like hydroxyl and methoxy substitution in their structures exhibited good in-vitro antileishmanial activity. Some compounds exhibited potent activity against gram positive bacteria Pseudomonas aeruginosa as compared to the standards. Altogether, the designed compounds exhibited good in-vitro anti-infective potential which was in good agreement with the in-silico predictions and they can be developed as important lead molecules for anti-infective and chemotherapeutic drug research.


2010 ◽  
Vol 144 (1-2) ◽  
pp. 153-159 ◽  
Author(s):  
Anders Jón Fjellheim ◽  
Geir Klinkenberg ◽  
Jorunn Skjermo ◽  
Inga Marie Aasen ◽  
Olav Vadstein

Author(s):  
Müberra Namlı Kalem ◽  
Ziya Kalem ◽  
Timur Gürgan

<p>Polycystic ovary syndrome (PCOS) is the most frequent endocrine disorder existing in women in their reproductive years and it is one of the most evaluated and discussed subjects of reproductive medicine with regard to its diagnosis and treatment.<br />Patients with PCOS constitute the most difficult population in the management of infertility. The factors that increase the success rates in the treatment of PCOS infertility are: pretreatment changes in life style, dietetic and psychological support, a detailed evaluation of the couple and the appropriate selection of the treatment protocol, a wide-spectrum approach to maintaining ovarian and endometrial synchronization in the management of the cycle, and well-developed laboratory conditions to support embryonic quality. However, even if these conditions are provided, OHSS, cancellations of the cycle, poor oocyte, and embryo qualities, unsuccessful fertilization and implantation, chromosomal abnormalities and early losses may still be experienced.</p>


Sign in / Sign up

Export Citation Format

Share Document