scholarly journals Ultrastructural localization of lectin receptors on the surface of the rat retinal pigment epithelium. Decreased sensitivity of the avidin-biotin method due to cell surface charge.

1984 ◽  
Vol 32 (8) ◽  
pp. 862-868 ◽  
Author(s):  
R M Pino

Monosaccharides on the apical processes of the retinal pigment epithelium were examined using lectin-affinity cytochemical methods. Lectin receptor sugars were localized with lectin-horseradish peroxidase (HRP) and lectin-ferritin conjugates as well as with biotinylated lectins, avidin, and biotinylated HRP. In contrast, only wheat germ agglutinin (WGA) receptors were identified with biotinylated WGA followed by avidin-ferritin or free avidin and biotinylated ferritin. Labeling with avidin-ferritin subsequent to biotinylated lectin treatment was dependent upon the source and lot of the reagent. These findings are similar to those reported for the endothelium of bone marrow sinusoids (Pino RM: Am J Anat, 169:259, 1984). Since both the retinal pigment epithelial and bone marrow sinusoidal surfaces are highly anionic (negative), we investigated the possibility that the charge of the lectin reagents and cell surfaces might affect the localization of monosaccharides on cell surfaces. Analytical isoelectric focusing revealed that biotinylated ferritin and some avidin-ferritins are highly anionic, while the other lectin reagents have more cationic (positive) components. Based on this information, a less charged biotinylated ferritin marker was made that made it possible to localize biotinylated lectins bound to the cell surface.

2006 ◽  
Vol 47 (5) ◽  
pp. 2108 ◽  
Author(s):  
Jeffrey R. Harris ◽  
Gary A. J. Brown ◽  
Marda Jorgensen ◽  
Shalesh Kaushal ◽  
E. Ann Ellis ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Hellinen ◽  
Marja Hagström ◽  
Heidi Knuutila ◽  
Marika Ruponen ◽  
Arto Urtti ◽  
...  

Abstract Melanin pigment has a significant role in ocular pharmacokinetics, because many drugs bind at high extent to melanin in the retinal pigment epithelial cells. Most retinal pigment epithelial cell lines lack pigmentation and, therefore, we re-pigmented human ARPE-19 cells to generate a pigmented cell model. Melanosomes from porcine retinal pigment epithelium were isolated and co-incubated with ARPE-19 cells that spontaneously phagocytosed the melanosomes. Internalized melanosomes were functionally integrated to the cellular system as evidenced by correct translocation of cellular Rab27a protein to the melanosomal membranes. The pigmentation was retained during cell cultivation and the level of pigmentation can be controlled by altering the amount of administered melanosomes. We used these cells to study melanosomal uptake of six drugs. The uptake was negligible with low melanin-binders (methotrexate, diclofenac) whereas most of the high melanin-binders (propranolol, chloroquine) were extensively taken up by the melanosomes. This cell line can be used to model pigmentation of the retinal pigment epithelium, while maintaining the beneficial cell line characteristics, such as fast generation of cultures, low cost, long-term maintenance and good reproducibility. The model enables studies at normal and decreased levels of pigmentation to model different retinal conditions.


1999 ◽  
Vol 16 (4) ◽  
pp. 619-628 ◽  
Author(s):  
ALISON M. HARMAN ◽  
ROBERT HOSKINS ◽  
LYN D. BEAZLEY

Form deprivation has been shown to result in myopia in a number of species such that the eye enlarges if one eye is permanently closed at the time of eye opening. In the quokka wallaby, the eye grows slowly throughout life. After form deprivation, the eye enlarges by 1–1.5 years of age to the size of that in a 4–6-year-old animal and the number of multinucleated retinal pigment epithelial (RPE) cells in the enlarged retina remains much lower than would be expected in eyes of comparable size. Here we have repeated the experiment but examined animals at 4 years of age. The sutured eye grew significantly larger than did its partner. Numbers of RPE cells were comparable between sutured and partner eyes but were lower than in normal animals of similar age. Reductions in RPE cell density were greater in nasal than in dorsal or ventral retina and were not seen in temporal retina. The distribution of multinucleated cells was quite different in the sutured and open eyes. As in normal eyes, partner eyes had most multinucleated cells in ventral retina, while in the sutured eyes such cells were located mainly in the far periphery. In conclusion, the RPE is significantly changed by the eye enlargement process. However, it is not known whether this change results from an active part played by the RPE in the retinal expansion process or whether the changes are simply a result of a passive increase in area of the RPE.


Stem Cells ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 457-466 ◽  
Author(s):  
Jeffrey R. Harris ◽  
Robert Fisher ◽  
Marda Jorgensen ◽  
Shalesh Kaushal ◽  
Edward W. Scott

2018 ◽  
Vol 13 (2) ◽  
pp. 103-108
Author(s):  
L. A Katargina ◽  
E. V Denisova ◽  
Natal’ja A. Osipova

Purpose - to acquaint the reader with a relatively rare heterogeneous group of diseases - hereditary macular dystrophies associated with damage to cells of retinal pigment epithelium and external segments of photoreceptors. А review of the literature based on publications from the Medline scientific medical articles database is presented. The review includes a description of the clinical picture, consideration of diagnosis and differential diagnosis of the main juvenile macular dystrophies, illustrated by own clinical examples.


Acta Naturae ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 30-39 ◽  
Author(s):  
A. E. Kharitonov ◽  
A. V. Surdina ◽  
O. S. Lebedeva ◽  
A. N. Bogomazova ◽  
M. A. Lagarkova

The retinal pigment epithelium is a monolayer of pigmented, hexagonal cells connected by tight junctions. These cells compose part of the outer blood-retina barrier, protect the eye from excessive light, have important secretory functions, and support the function of photoreceptors, ensuring the coordination of a variety of regulatory mechanisms. It is the degeneration of the pigment epithelium that is the root cause of many retinal degenerative diseases. The search for reliable cell sources for the transplantation of retinal pigment epithelium is of extreme urgency. Pluripotent stem cells (embryonic stem or induced pluripotent) can be differentiated with high efficiency into the pigment epithelium of the retina, which opens up possibilities for cellular therapy in macular degeneration and can slow down the development of pathology and, perhaps, restore a patient's vision. Pioneering clinical trials on transplantation of retinal pigment epithelial cells differentiated from pluripotent stem cells in the United States and Japan confirmed the need for developing and optimizing such approaches to cell therapy. For effective use, pigment epithelial cells differentiated from pluripotent stem cells should have a set of functional properties characteristic of such cells in vivo. This review summarizes the current state of preclinical and clinical studies in the field of retinal pigment epithelial transplantation therapy. We also discuss different differentiation protocols based on data in the literature and our own data, and the problems holding back the widespread therapeutic application of retinal pigment epithelium differentiated from pluripotent stem cells.


Sign in / Sign up

Export Citation Format

Share Document