scholarly journals The cell coat of the sensory and supporting cells of the rainbow trout saccular macula as demonstrated by reaction with ruthenium red and tannic acid.

1990 ◽  
Vol 38 (11) ◽  
pp. 1615-1623 ◽  
Author(s):  
K M Khan ◽  
J S Hatfield ◽  
D G Drescher

The surface of most cells is covered by glycoconjugates. The composition and thickness of the surface coat varies among different cell types. The purpose of the present study was to demonstrate the presence of and to characterize the cell coat surrounding the cells in the saccular macula of the rainbow trout. Tissues were fixed in Karnovsky's fixative containing either ruthenium red (0.5, 1, or 2%) or tannic acid (1, 2, or 4%). The apical surface of the sensory and supporting cells reacted with both agents. Varying the concentration of the compounds within a certain range did not significantly affect the degree of tissue staining. Whereas ruthenium red staining was distributed evenly along the luminal surface of the epithelium and along the length of the stereocilia, tannic acid formed electron-dense clumps on the luminal surface of sensory and non-sensory cells and in the basal region of the macular epithelium. The stereocilia of the sensory cells also exhibited tannic acid-positive, electrondense precipitate, particularly near the distal ends of these processes, while uniform staining of the plasma membrane was seen along their lengths. The results of this study suggest that the trout saccular macula is provided with extracellular microenvironments which may be necessary for functional integrity.

1985 ◽  
Vol 17 (3) ◽  
pp. 281-288 ◽  
Author(s):  
Norma Slepecky ◽  
Steven C. Chamberlain

Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


1993 ◽  
Vol 71 (9) ◽  
pp. 1861-1868 ◽  
Author(s):  
F. Pardos ◽  
C. Roldán ◽  
J. Benito ◽  
A. Aguirre ◽  
I. Fernández

The lophophoral tentacles of two phoronids, Phoronis psammophila and Phoronis hippocrepia, are described from an ultrastructural point of view. The tentacles are hollow structures, with an epidermis exhibiting supporting cells, sensory cells, and four types of gland cells, A, B1, B2, B3. The epidermis rests on a connective tissue layer, tubular in shape, enclosing a coelomic space lined by myoepithelial mesothelium (peritoneum). There is a single blood capillary in the tentacular coelomic cavity, attached to the frontal face of the tentacle, with contractile walls derived from the peritoneum. Both erythrocytes and amoebocyte-like cells occur inside the capillary. Differences between the tentacles of these two species and those of Phoronis australis, whose structure is already known, mainly concern the abundance and distribution of the epidermal gland cell types and are related to the burrowing and tube-building activities of these animals in different substrata.


Development ◽  
1986 ◽  
Vol 94 (1) ◽  
pp. 189-205
Author(s):  
Betty C. Gallagher

The developing chick lung was examined in the electron microscope for intimate cell contacts between epithelium and mesenchyme, discontinuities in the basal lamina and substructure of the basement membrane. Cell filopodia were seen which crossed the basal lamina from both the epithelial and the mesenchymal cells. Ruthenium red and tannic acid staining of the basal lamina of the chick lung showed it to be thin and sometimes discontinuous at the tips compared to the more substantial basal lamina in the interbud areas. The bilaminar distribution of particles seen with ruthenium red is similar to those seen in the cornea and lens. With tannic acid staining, filaments could be seen which crossed the lamina lucida and connected with the lamina densa. Spikes perpendicular to the basal lamina were sometimes seen with a periodicity of approximately 110 nm. Alcian blue staining revealed structure similar to that seen by ruthenium red staining in the salivary and mammary glands, although the interparticle spacing was closer. Collagen was located in areas of morphogenetic stability, as has been seen by other investigators in different tissues. Collagen was coated with granules (probably proteoglycan) at periodic intervals when stained with ruthenium red. The fibrils were oriented circumferentially around the mesobronchus and were assumed to continue into the bud, but the fibres curve laterally at the middle of a bud. This orientation is opposite to that seen by another investigator in the mouse lung. In general, the observations made in the avian lung are similar to those seen in branching mammalian tissue. It is likely, therefore, that the chick lung uses strategies in its morphogenesis that are similar to those that have been elucidated previously in developing mammalian organs.


1989 ◽  
Vol 147 (1) ◽  
pp. 147-168 ◽  
Author(s):  
STEVE F. PERRY ◽  
PIERRE LAURENT

1. Whole-body ionic fluxes and gill chloride cell (CC) morphology were monitored in rainbow trout (Salmo gairdneri) exposed acutely or chronically to natural fresh water (NFW; [Na+]=0.120 mmoll−1; [Cr]=0.164 mmoll−1) or artificially prepared fresh water with reduced [NaCl] (AFW; [Na+]=0.017 mmoll−1; [CT]=0.014 mmoll−1). 2. Net fluxes of Na+ (JnetNa) and Cl− (JnetCl) became extremely negative (indicating net NaCl loss to the environment) upon immediate exposure to AFW exclusively as a result of reduced NaCl influx (JinNa and JinNa). JnetNa and JnetCl were gradually restored to control rates during prolonged (30 days) exposure to AFW. 3. The restoration of JnetCl in AFW was due both to increased JinCl and to reduced Cl− efflux (JoutCl) whereas the primary response contributing to the restoration of JnetNa a t was an increase of JNain. 4. The total apical surface area of branchial CCs exposed to the external environment increased markedly after 24 h in AFW and remained elevated for 1 month as a consequence of enlargement of individual CCs and, to a lesser extent, increased CC density. JinNa and JinNa were correlated significantly with total CC apical surface area. 5. Plasma cortisol levels rose transiently in fish exposed to AFW. Treatment of NFW-adapted fish with cortisol for 10 days (a protocol known to cause CC proliferation) caused pronounced increases in JinCl and JinNa, as measured in both NFW and AFW. 6. These results suggest that an important adaptational response of rainbow trout to low environmental [NaCl] is cortisol-mediated enlargement of branchial epithelial CCs which, in turn, enhances the NaCl-transporting capacity of the gill as a result of the proliferation of Na+ and Cl− transport sites.


1975 ◽  
Vol 19 (3) ◽  
pp. 621-644
Author(s):  
D.M. Dwyer

Trypanosoma lewisi bloodstream and culture forms were agglutinated differentially with low concentrations of the cationic compounds: ruthenium red, ruthenium violet, Alcian blue chloride, 1-hexadecylpyridinium chloride, lanthanum chloride, and cationized ferritin. The bloodstream form trypanosomes gave the highest agglutination levels with each of the compounds tested. Ruthenium red was the most effective inducer of cell agglutination among the several cations used. Trypsin-treated bloodstream forms were agglutinated less in the presence of ruthenium red than untreated controls. Ruthenium red-induced cell agglutination also was lowered with chondroitin sulphate and dextran sulphate, but not with alpha-D-glucose, alpha-D-mannose or with several methyl glycosides. Treatment of the bloodstream trypanosomes with alpha-amylase, dextranase, or neuraminidase had little effect on agglutination levels obtained with ruthenium red. Fine-structure cytochemical staining with ruthenium red, ruthenium violet, and Alcian blue-lanthanum nitrate was used to ascertain the presence and distribution of presumptive carbohydrates in the trypanosome cell surface. The extracellular surface coat of the bloodstream forms stained densely with each of the polycationic dyes. Trypsin treatment removed the surface coat from bloodstream trypanosomes; however, the surface membranes of the organisms were stained densely with the several dyes. Similar surface-membrane staining was obtained with the cationic compounds and the culture forms, which lack a cell surface coat. Cationized ferrin was used at the fine-structure level to visualize the negative surface charge present in the cell surface coat and external membrane of the several trypanosome stages. Results obrained from the agglutination and cytochemistry experiments indicate that complex polysaccharides are present in the surface membranes and cell surface coat of T. lewisi bloodstream forms. Similar conclusions also pertain to the surface membranes of the T. lewisi culture from trypanosomes. The carbohydrates probably represent glycopeptide and glycoprotein structural components of the surface membrane of this organism.


2020 ◽  
Vol 30 (1) ◽  
pp. 33-39
Author(s):  
N. N. Kamardin

TEM and SEM electron microscopy have been used to study osphradia in 6 species of marine Caenogastropoda. The ultrastructural features of mechanoreceptor cells that perform the Littorina osmoreception function in osphradium organs are presented. Mechanoreception is based on a possible change in the volume of cisterns of microvilli of supporting cells, which can be transmitted by the cilia of nearby mechanoreceptor cells. These cells obviously, have mechanosensory channels on the apical surface. It has been first discovered in predatory molluscs actively searching for food, that single receptor cells with a mobile sensilla consisting of several cilium were joined together. They are located along the groove zone and follow the direction and force of the movement of water along the osphradium petals.


1967 ◽  
Vol 2 (3) ◽  
pp. 349-358
Author(s):  
R. M. EAKIN ◽  
JANE A. WESTFALL ◽  
M. J. DENNIS

The eye of a nudibranch, Hermissenda crassicornis, was studied by light and electron microscopy. Three kinds of cells were observed: large sensory cells, each bearing at one end an array of microvilli (rhabdomere) and at the other end an axon which leaves the eye by the optic nerve; large pigmented supporting cells; and small epithelial cells, mostly corneal. There are five sensory cells, and the same number of nerve fibres in the optic nerve. The receptor cells contain an abundance of small vesicles, 600-800 Å in diameter. The lens is a spheroidal mass of osmiophilic, finely granular material. A basal lamina and a capsule of connective tissue enclose the eye. In some animals the eye is ‘infected’ with very small bodies, 4-5 µ in diameter, thought to be symbionts.


1979 ◽  
Author(s):  
Y.J. Legrand ◽  
J. Bariety ◽  
P. Birembaut ◽  
H. Michel ◽  
F. Fauvel ◽  
...  

In order to characterize the subendothelial macromolecules able to interact with platelets rabbit aortas were de-endothelialized and incubated either with chymotrypsin (24 h at 37° C), with a highly purified bacterial collagenase (2 h at 37° C), or with chymotrypsin followed by collagenase or the reverse. Histochemical ultrastructural studies were performed before and after blood perfusion, using three different staining procedures: tannic acid (for the microfibrillar structures and elastin), ruthenium red (for the polyanions) and two peroxidase-labelled lectins (concanavalin A and ricinus communis (for the detection of saccharidic determinants)). After chymotrypsin, the tannic acid +ve, ruthenium red +ve and lectin +ve microfibrils had been digested; platelet adherence to the remaining sparse collagen fibrils persisted. After collagenase, these microfibrils are preserved, collagen has been digested, but the platelets can still adhere. After combined incubation with both enzymes, elastin is the only remaining constituent and no platelet adhesion can be observed.These results show that in the rabbit aorta subendothelium besides collagen, microfibrillar glycoproteins are able to interact with human platelets.


Sign in / Sign up

Export Citation Format

Share Document