Thyroid transcription factor-1, hepatocyte nuclear factor-3beta, surfactant protein B, C, and Clara cell secretory protein in developing mouse lung.

1996 ◽  
Vol 44 (10) ◽  
pp. 1183-1193 ◽  
Author(s):  
L Zhou ◽  
L Lim ◽  
R H Costa ◽  
J A Whitsett

We used immunohistochemical analysis to localize thyroid transcription factor-1 (TTF-1), hepatocyte nuclear factor-3beta (HNF-3beta), prosurfactant proteins B and C (pro-SP-B, pro-SP-C), surfactant protein B (SP-B), and Clara cell secretory protein (CCSP) in developing mouse lung. TTF-1 and HNF-3beta were expressed at the onset of lung morphogenesis (gestational Day 10) and throughout fetal lung development, being detected in the nuclei of airway epithelial cells. TTF-1 was most prominent in distal airway epithelial cells in embryonic lung and HNF-3beta in proximal bronchial and bronchiolar epithelial cells. Pro-SP-B and pro-SP-C were first detected on gestational Day 11, being localized to the cytoplasm of airway epithelial cells. Expression of both pro-proteins was confined to distal airway epithelial cells from gestational Day 12 to Day 16. From gestational Day 17 and thereafter, pro- SP-B was detectable in Type II cells and bronchiolar epithelial cells, whereas pro-SP-C was restricted to Type II cells. SP-B peptide was first detected on gestational Day 17 in the cytoplasm of Type II cells and within the lumen of distal airways. SP-B peptide was detectable only in the cytoplasm of Type II cells in adult lung. CCSP was first detected on gestational Day 17, being localized to the cytoplasm of columnar epithelial cells lining the conducting airways. Pro-SP-B, SF-B, pro-SP-C, and CCSP staining increased before birth. The early expression of TTF-1 and HNF-3beta, preceding and overlapping that of pro-SP-B, mature SP-B, pro-SP-C, and CCSP, supports a regulatory role for TTF-1 and HNF-3beta in lung-specific gene expression.

2008 ◽  
Vol 294 (6) ◽  
pp. L1187-L1196 ◽  
Author(s):  
Rong Ji ◽  
Clement M. Lee ◽  
Linda W. Gonzales ◽  
Yi Yang ◽  
Mark O. Aksoy ◽  
...  

Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca2+ and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca2+ activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.


2003 ◽  
Vol 285 (3) ◽  
pp. L691-L700 ◽  
Author(s):  
Jason M. Roper ◽  
Rhonda J. Staversky ◽  
Jacob N. Finkelstein ◽  
Peter C. Keng ◽  
Michael A. O'Reilly

The unique morphology and cell-specific expression of surfactant genes have been used to identify and isolate alveolar type II epithelial cells. Because these attributes can change during lung injury, a novel method was developed for detecting and isolating mouse type II cells on the basis of transgenic expression of enhanced green fluorescence protein (EGFP). A line of transgenic mice was created in which EGFP was targeted to type II cells under control of the human surfactant protein (SP)-C promoter. Green fluorescent cells that colocalized by immunostaining with endogenous pro-SP-C were scattered throughout the parenchyma. EGFP was not detected in Clara cell secretory protein-expressing airway epithelial cells or other nonlung tissues. Pro-SP-C immunostaining diminished in lungs exposed to hyperoxia, consistent with decreased expression and secretion of intracellular precursor protein. In contrast, type II cells could still be identified by their intrinsic green fluorescence, because EGFP is not secreted. Type II cells could also be purified from single-cell suspensions of lung homogenates using fluorescence-activated cell sorting. Less than 1% of presorted cells exhibited green fluorescence compared with >95% of the sorted population. As expected for type II cells, ultrastructural analysis revealed that the sorted cells contained numerous lamellar bodies. SP-A, SP-B, and SP-C mRNAs were detected in the sorted population, but T1α and CD31 (platelet endothelial cell adhesion molecule) were not, indicating enrichment of type II epithelial cells. This method will be invaluable for detecting and isolating mouse type II cells under a variety of experimental conditions.


1998 ◽  
Vol 274 (5) ◽  
pp. L864-L869 ◽  
Author(s):  
X. L. Yao ◽  
T. Ikezono ◽  
M. Cowan ◽  
C. Logun ◽  
C. W. Angus ◽  
...  

Clara cell secretory protein (CCSP) is an inhibitor of secretory phospholipase A2. It is produced by airway epithelial cells and is present in airway secretions. Because interferon (IFN)-γ can induce gene expression in airway epithelial cells and may modulate the inflammatory response in the airway, it was of interest to study the effect of this cytokine on epithelial cell CCSP mRNA expression and CCSP protein synthesis. A human bronchial epithelial cell line (BEAS-2B) was used for this study. CCSP mRNA was detected by ribonuclease protection assay. IFN-γ was found to increase CCSP mRNA expression in a time- and dose-dependent manner. The CCSP mRNA level increased after IFN-γ (300 U/ml) treatment for 8–36 h, with the peak increase at 18 h. Immunobloting of CCSP protein also demonstrated that IFN-γ induced the synthesis and secretion of CCSP protein in a time-dependent manner. Nuclear run-on, CCSP reporter gene activity assay, and CCSP mRNA half-life assay demonstrated that IFN-γ-induced increases in CCSP gene expression were mediated, at least in part, at the posttranscriptional level. The present study demonstrates that IFN-γ can induce increases in steady-state mRNA levels and protein synthesis of human CCSP protein in airway epithelial cells and may modulate airway inflammatory responses in this manner.


2006 ◽  
Vol 291 (3) ◽  
pp. L502-L511 ◽  
Author(s):  
Robert J. Homer ◽  
Zhou Zhu ◽  
Lauren Cohn ◽  
Chun Gun Lee ◽  
Wendy I. White ◽  
...  

The mammalian chitinase family includes members both with and without enzymatic activity against chitin, a product of fungal cell walls, exoskeletons of crustaceans and insects, and the microfilarial sheaths of parasitic nematodes. Two members of that family, Ym1 and acidic mammalian chitinase (AMCase), are strongly upregulated in pulmonary T helper (Th) 2 inflammation but not in Th1 inflammation. The sites of expression of these products are incompletely known. We show here that, in two different models of Th2 inflammation, Ym1 and AMCase are mutually exclusively expressed in proximal vs. distal airway epithelium, respectively, whereas both are expressed in alveolar macrophages. This regional difference along the airway corresponds to the previously noted distinction between mucus positive proximal cells and mucus negative distal cells under the same conditions. Among distal cells, AMCase colocalizes with epithelial cells expressing the Clara cell marker Clara cell secretory protein. These AMCase-expressing cells retain expression of FOXA2, a transcription factor whose downregulation in association with IL-13 signaling has previously been associated with production of mucus in proximal airway epithelial cells. These results provide evidence that secretory cells of proximal and distal airways undergo fundamentally different gene expression programs in response to allergic inflammation. Furthermore, AMCase provides the first positive molecular marker of distal Clara cell secretory protein-expressing cells under these conditions.


2000 ◽  
Vol 279 (2) ◽  
pp. L379-L389 ◽  
Author(s):  
Dennis W. McGraw ◽  
Susan L. Forbes ◽  
Judith C. W. Mak ◽  
David P. Witte ◽  
Patricia E. Carrigan ◽  
...  

Airway epithelial cells express β2-adrenergic receptors (β2-ARs), but their role in regulating airway responsiveness is unclear. With the Clara cell secretory protein (CCSP) promoter, we targeted expression of β2-ARs to airway epithelium of transgenic (CCSP-β2-AR) mice, thereby mimicking agonist activation of receptors only in these cells. In situ hybridization confirmed that transgene expression was confined to airway epithelium, and autoradiography showed that β2-AR density in CCSP-β2-AR mice was approximately twofold that of nontransgenic (NTG) mice. Airway responsiveness measured by whole body plethysmography showed that the methacholine dose required to increase enhanced pause to 200% of baseline (ED200) was greater for CCSP-β2-AR than for NTG mice (345 ± 34 vs. 157 ± 14 mg/ml; P < 0.01). CCSP-β2-AR mice were also less responsive to ozone (0.75 ppm for 4 h) because enhanced pause in NTG mice acutely increased to 77% over baseline ( P < 0.05) but remained unchanged in the CCSP-β2-AR mice. Although both groups were hyperreactive to methacholine 6 h after ozone exposure, the ED200for ozone-exposed CCSP-β2-AR mice was equivalent to that for unexposed NTG mice. These findings show that epithelial cell β2-ARs regulate airway responsiveness in vivo and that the bronchodilating effect of β-agonists results from activation of receptors on both epithelial and smooth muscle cells.


2004 ◽  
Vol 287 (6) ◽  
pp. L1193-L1198 ◽  
Author(s):  
Yoshihiko Chiba ◽  
Takashi Kusakabe ◽  
Shioko Kimura

Uteroglobin-related protein 1 (UGRP1) is a secretory protein, highly expressed in epithelial cells of airways. Although an involvement of UGRP1 in the pathogenesis of asthma has been suggested, its function in airways remains unclear. In the present study, a relationship between airway inflammation, UGRP1 expression, and interleukin-9 (IL-9), an asthma candidate gene, was evaluated by using a murine model of allergic bronchial asthma. A severe airway inflammation accompanied by airway eosinophilia and elevation of IL-9 in bronchoalveolar lavage (BAL) fluids was observed after ovalbumin (OVA) challenge to OVA-sensitized mice. In this animal model of airway inflammation, lung Ugrp1 mRNA expression was greatly decreased compared with control mice. A significant inverse correlation between lung Ugrp1 mRNA levels and IL-9 levels in BAL fluid was demonstrated by regression analysis ( r = 0.616, P = 0.023). Immunohistochemical analysis revealed a distinct localization of UGRP1 in airway epithelial cells of control mice, whereas UGRP1 staining was patchy and faint in inflamed airways. Intranasal administration of IL-9 to naive mice decreased the level of Ugrp1 expression in lungs. These findings suggest that UGRP1 is downregulated in inflamed airways, such as allergic asthmatics, and IL-9 might be an important mediator for modulating UGRP1 expression.


2019 ◽  
Vol 317 (2) ◽  
pp. L283-L294 ◽  
Author(s):  
Kelly A. Correll ◽  
Karen E. Edeen ◽  
Rachel L. Zemans ◽  
Elizabeth F. Redente ◽  
Karina A. Serban ◽  
...  

Epithelial-fibroblast interactions are thought to be very important in the adult lung in response to injury, but the specifics of these interactions are not well defined. We developed coculture systems to define the interactions of adult human alveolar epithelial cells with lung fibroblasts. Alveolar type II cells cultured on floating collagen gels reduced the expression of type 1 collagen (COL1A1) and α-smooth muscle actin (ACTA2) in fibroblasts. They also reduced fibroblast expression of hepatocyte growth factor (HGF), fibroblast growth factor 7 (FGF7, KGF), and FGF10. When type II cells were cultured at an air-liquid interface to maintain high levels of surfactant protein expression, this inhibitory activity was lost. When type II cells were cultured on collagen-coated tissue culture wells to reduce surfactant protein expression further and increase the expression of some type I cell markers, the epithelial cells suppressed transforming growth factor-β (TGF-β)-stimulated ACTA2 and connective tissue growth factor (CTGF) expression in lung fibroblasts. Our results suggest that transitional alveolar type II cells and likely type I cells but not fully differentiated type II cells inhibit matrix and growth factor expression in fibroblasts. These cells express markers of both type II cells and type I cells. This is probably a normal homeostatic mechanism to inhibit the fibrotic response in the resolution phase of wound healing. Defining how transitional type II cells convert activated fibroblasts into a quiescent state and inhibit the effects of TGF-β may provide another approach to limiting the development of fibrosis after alveolar injury.


Sign in / Sign up

Export Citation Format

Share Document