The 2018 update of the US National Seismic Hazard Model: Additional period and site class data

2020 ◽  
pp. 875529302097097
Author(s):  
Allison M Shumway ◽  
Mark D Petersen ◽  
Peter M Powers ◽  
Sanaz Rezaeian ◽  
Kenneth S Rukstales ◽  
...  

As part of the update of the 2018 National Seismic Hazard Model (NSHM) for the conterminous United States (CONUS), new ground motion and site effect models for the central and eastern United States were incorporated, as well as basin depths from local seismic velocity models in four western US (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic seismic hazard curves for an expanded set of spectral periods (0.01 to 10 s) and site classes (VS30 = 150 to 1500 m/s) for the CONUS, as well as account for amplification of long-period ground motions in deep sedimentary basins in the Los Angeles, San Francisco Bay, Seattle, and Salt Lake City areas. Two sets of 2018 NSHM hazard data (hazard curves and uniform-hazard ground motions) are available: (1) 0.05°-latitude-by-0.05°-longitude gridded data for the CONUS and (2) higher resolution 0.01°-latitude-by-0.01°-longitude gridded data for the four WUS basins. Both sets of data contain basin effects in the WUS deep sedimentary basins. Uniform-hazard ground motion data are interpolated for 2, 5, and 10% probability of exceedance in 50 years from the hazard curves. The gridded data for the hazard curves and uniform-hazard ground motions, for all periods and site classes, are available for download at the U.S. Geological Survey ScienceBase Catalog ( https://doi.org/10.5066/P9RQMREV ). The design ground motions derived from the hazard curves have been accepted by the Building Seismic Safety Council for adoption in the 2020 National Earthquake Hazard Reduction Program Recommended Seismic Provisions.

2019 ◽  
Vol 36 (1) ◽  
pp. 5-41 ◽  
Author(s):  
Mark D. Petersen ◽  
Allison M. Shumway ◽  
Peter M. Powers ◽  
Charles S. Mueller ◽  
Morgan P. Moschetti ◽  
...  

During 2017–2018, the National Seismic Hazard Model for the conterminous United States was updated as follows: (1) an updated seismicity catalog was incorporated, which includes new earthquakes that occurred from 2013 to 2017; (2) in the central and eastern United States (CEUS), new ground motion models were updated that incorporate updated median estimates, modified assessments of the associated epistemic uncertainties and aleatory variabilities, and new soil amplification factors; (3) in the western United States (WUS), amplified shaking estimates of long-period ground motions at sites overlying deep sedimentary basins in the Los Angeles, San Francisco, Seattle, and Salt Lake City areas were incorporated; and (4) in the conterminous United States, seismic hazard is calculated for 22 periods (from 0.01 to 10 s) and 8 uniform VS30 maps (ranging from 1500 to 150 m/s). We also include a description of updated computer codes and modeling details. Results show increased ground shaking in many (but not all) locations across the CEUS (up to ~30%), as well as near the four urban areas overlying deep sedimentary basins in the WUS (up to ~50%). Due to population growth and these increased hazard estimates, more people live or work in areas of high or moderate seismic hazard than ever before, leading to higher risk of undesirable consequences from forecasted future ground shaking.


2020 ◽  
Vol 110 (2) ◽  
pp. 666-688 ◽  
Author(s):  
Daniel E. McNamara ◽  
Emily Wolin ◽  
Peter M. Powers ◽  
Allison M. Shumway ◽  
Morgan P. Moschetti ◽  
...  

ABSTRACT The selection and weighting of ground-motion models (GMMs) introduces a significant source of uncertainty in U.S. Geological Survey (USGS) National Seismic Hazard Modeling Project (NSHMP) forecasts. In this study, we evaluate 18 candidate GMMs using instrumental ground-motion observations of horizontal peak ground acceleration (PGA) and 5%-damped pseudospectral acceleration (0.02–10 s) for tectonic earthquakes and volcanic eruptions, to inform logic-tree weights for the update of the USGS seismic hazard model for Hawaii. GMMs are evaluated using two methods. The first is a total residual visualization approach that compares the probability density function (PDF), mean and standard deviations σ, of the observed and predicted ground motion. The second GMM evaluation method we use is the common total residual probabilistic scoring method (log likelihood [LLH]). The LLH method provides a single score that can be used to weight GMMs in the Hawaii seismic hazard model logic trees. The total residual PDF approach provides additional information by preserving GMM over- and underprediction across a broad spectrum of periods that is not available from a single value LLH score. We apply these GMM evaluation methods to two different data sets: (1) a database of instrumental ground motions from historic earthquakes in Hawaii from 1973 to 2007 (Mw 4–7.3) and (2) available ground motions from recent earthquakes (Mw 4–6.9) associated with 2018 Kilauea eruptions. The 2018 Kilauea sequence contains both volcanic eruptions and tectonic earthquakes allowing for statistically significant GMM comparisons of the two event classes. The Kilauea ground observations provide an independent data set allowing us to evaluate the predictive power of GMMs implemented in the new USGS nshmp-haz software system. We evaluate GMM performance as a function of earthquake depth and we demonstrate that short-period volcanic eruption ground motions are not well predicted by any candidate GMMs. Nine of the initial 18 candidate GMMs fit the observed ground motions and meet established criteria for inclusion in the update of the Hawaii seismic hazard model. A weighted mean of four top performing GMMs in this study (NGAsubslab, NGAsubinter, ASK14, A10) is 50% lower for PGA than for GMMS used in the previous USGS seismic hazard model for Hawaii.


2021 ◽  
pp. 875529302098801
Author(s):  
Mark D Petersen ◽  
Allison M Shumway ◽  
Peter M Powers ◽  
Charles S Mueller ◽  
Morgan P Moschetti ◽  
...  

The 2018 US Geological Survey National Seismic Hazard Model (NSHM) incorporates new data and updated science to improve the underlying earthquake and ground motion forecasts for the conterminous United States. The NSHM considers many new data and component input models: (1) new earthquakes between 2013 and 2017 and updated earthquake magnitudes for some earlier earthquakes; (2) two updated smoothed seismicity models to forecast earthquake rates; (3) two suites of new central and eastern US (CEUS) ground motion models (GMMs) to translate ground shaking for various earthquake sizes and source-to-site distances considered in the model; (4) two CEUS GMMs for aleatory variability; (5) two CEUS site-effect models that modify ground shaking based on alternative shallow site conditions; (6) more advanced western US (WUS) lithologic and structural information to assess basin site effects for selected urban regions; and (7) a more comprehensive range of outputs (22 periods and 8 site classes) than in previous versions of the NSHMs. Each of these new datasets and models produces changes in the probabilistic ground shaking levels that are spatially and statistically analyzed. Recent earthquakes or changes to some older earthquake magnitudes and locations mostly result in probabilistic ground shaking levels that are similar to previous models, but local changes can reach up to +80% and −60% compared to the 2014 model. Newly developed CEUS models for GMMs, aleatory variability, and site effects cause overall changes up to ±64%. The addition of the WUS basin amplifications causes changes of up to +60% at longer periods for sites overlying deep soft soils. Across the conterminous United States, the hazard changes in the model are mainly caused by new GMMs in the CEUS, by sedimentary basin effects for long periods (≥1 s) in the WUS, and by seismicity changes for short (0.2 s) and long (1 s) periods for both areas.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2021 ◽  
pp. 875529302110039
Author(s):  
Filippos Filippitzis ◽  
Monica D Kohler ◽  
Thomas H Heaton ◽  
Robert W Graves ◽  
Robert W Clayton ◽  
...  

We study ground-motion response in urban Los Angeles during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using recordings from multiple regional seismic networks as well as a subset of 350 stations from the much denser Community Seismic Network. In the first part of our study, we examine the observed response spectral (pseudo) accelerations for a selection of periods of engineering significance (1, 3, 6, and 8 s). Significant ground-motion amplification is present and reproducible between the two events. For the longer periods, coherent spectral acceleration patterns are visible throughout the Los Angeles Basin, while for the shorter periods, the motions are less spatially coherent. However, coherence is still observable at smaller length scales due to the high spatial density of the measurements. Examining possible correlations of the computed response spectral accelerations with basement depth and Vs30, we find the correlations to be stronger for the longer periods. In the second part of the study, we test the performance of two state-of-the-art methods for estimating ground motions for the largest event of the Ridgecrest earthquake sequence, namely three-dimensional (3D) finite-difference simulations and ground motion prediction equations. For the simulations, we are interested in the performance of the two Southern California Earthquake Center 3D community velocity models (CVM-S and CVM-H). For the ground motion prediction equations, we consider four of the 2014 Next Generation Attenuation-West2 Project equations. For some cases, the methods match the observations reasonably well; however, neither approach is able to reproduce the specific locations of the maximum response spectral accelerations or match the details of the observed amplification patterns.


2020 ◽  
Vol 18 (14) ◽  
pp. 6119-6148
Author(s):  
Graeme Weatherill ◽  
Fabrice Cotton

Abstract Regions of low seismicity present a particular challenge for probabilistic seismic hazard analysis when identifying suitable ground motion models (GMMs) and quantifying their epistemic uncertainty. The 2020 European Seismic Hazard Model adopts a scaled backbone approach to characterise this uncertainty for shallow seismicity in Europe, incorporating region-to-region source and attenuation variability based on European strong motion data. This approach, however, may not be suited to stable cratonic region of northeastern Europe (encompassing Finland, Sweden and the Baltic countries), where exploration of various global geophysical datasets reveals that its crustal properties are distinctly different from the rest of Europe, and are instead more closely represented by those of the Central and Eastern United States. Building upon the suite of models developed by the recent NGA East project, we construct a new scaled backbone ground motion model and calibrate its corresponding epistemic uncertainties. The resulting logic tree is shown to provide comparable hazard outcomes to the epistemic uncertainty modelling strategy adopted for the Eastern United States, despite the different approaches taken. Comparison with previous GMM selections for northeastern Europe, however, highlights key differences in short period accelerations resulting from new assumptions regarding the characteristics of the reference rock and its influence on site amplification.


Author(s):  
Soumya Kanti Maiti ◽  
Gony Yagoda-Biran ◽  
Ronnie Kamai

ABSTRACT Models for estimating earthquake ground motions are a key component in seismic hazard analysis. In data-rich regions, these models are mostly empirical, relying on the ever-increasing ground-motion databases. However, in areas in which strong-motion data are scarce, other approaches for ground-motion estimates are sought, including, but not limited to, the use of simulations to replace empirical data. In Israel, despite a clear seismic hazard posed by the active plate boundary on its eastern border, the instrumental record is sparse and poor, leading to the use of global models for hazard estimation in the building code and all other engineering applications. In this study, we develop a suite of alternative ground-motion models for Israel, based on an empirical database from Israel as well as on four data-calibrated synthetic databases. Two host models are used to constrain model behavior, such that the epistemic uncertainty is captured and characterized. Despite the lack of empirical data at large magnitudes and short distances, constraints based on the host models or on the physical grounds provided by simulations ensure these models are appropriate for engineering applications. The models presented herein are cast in terms of the Fourier amplitude spectra, which is a linear, physical representation of ground motions. The models are suitable for shallow crustal earthquakes; they include an estimate of the median and the aleatory variability, and are applicable in the magnitude range of 3–8 and distance range of 1–300 km.


Author(s):  
Sarah Azar ◽  
Mayssa Dabaghi

ABSTRACT The use of numerical simulations in probabilistic seismic hazard analysis (PSHA) has achieved a promising level of reliability in recent years. One example is the CyberShake project, which incorporates physics-based 3D ground-motion simulations within seismic hazard calculations. Nonetheless, considerable computational time and resources are required due to the significant processing requirements imposed by source-based models on one hand, and the large number of seismic sources and possible rupture variations on the other. This article proposes to use a less computationally demanding simulation-based PSHA framework for CyberShake. The framework can accurately represent the seismic hazard at a site, by only considering a subset of all the possible earthquake scenarios, based on a Monte-Carlo simulation procedure that generates earthquake catalogs having a specified duration. In this case, ground motions need only be simulated for the scenarios selected in the earthquake catalog, and hazard calculations are limited to this subset of scenarios. To validate the method and evaluate its accuracy in the CyberShake platform, the proposed framework is applied to three sites in southern California, and hazard calculations are performed for earthquake catalogs with different lengths. The resulting hazard curves are then benchmarked against those obtained by considering the entire set of earthquake scenarios and simulations, as done in CyberShake. Both approaches yield similar estimates of the hazard curves for elastic pseudospectral accelerations and inelastic demands, with errors that depend on the length of the Monte-Carlo catalog. With 200,000 yr catalogs, the errors are consistently smaller than 5% at the 2% probability of exceedance in 50 yr hazard level, using only ∼3% of the entire set of simulations. Both approaches also produce similar disaggregation patterns. The results demonstrate the potential of the proposed approach in a simulation-based PSHA platform like CyberShake and as a ground-motion selection tool for seismic demand analyses.


Sign in / Sign up

Export Citation Format

Share Document