Influence of ground motion duration on the dynamic deformation capacity of reinforced concrete frame structures

2021 ◽  
pp. 875529302110338
Author(s):  
Vishvendra Bhanu ◽  
Reagan Chandramohan ◽  
Timothy J Sullivan

This study investigates the influence of ground motion duration on the dynamic deformation capacity of a suite of 10 modern reinforced concrete moment frame buildings. A robust numerical algorithm is proposed to estimate the dynamic deformation capacity of a structure by conducting incremental dynamic analysis. The geometric mean dynamic deformation capacity of the considered buildings was, on average, found to be 26% lower under long duration ground motions, compared to spectrally equivalent short duration ground motions. A consistent effect of duration on dynamic deformation capacity was observed over a broad range of structural periods considered in this study. Response spectral shape, however, was found to not significantly influence dynamic deformation capacity. These results indicate that the effect of duration could be explicitly considered in seismic design codes by modifying the deformation capacities of structures.

2010 ◽  
Vol 163-167 ◽  
pp. 4301-4308
Author(s):  
Min Sheng Guan ◽  
Da Jian Han ◽  
Hong Biao Du ◽  
Xin Wang

Earthquake input energy and structural energy dissipation are key indicators to assess the seismic performance of structures. To study the rules of distribution of hysteretic energy within structures, a 6-storey regular reinforced concrete frame structure model is analyzed through elasto-plastic time-history dynamic analysis using the El Centro and Northridge accelerograms. Based on the comparison between numerical results for the earthquake input energy and structural hysteretic energy under the minor, moderate and major earthquakes of Grade 8 and 9, the distribution of the ratio of the storey hysteretic energy to the total hysteretic energy through the height was further studied. It shows that the computed results corresponding to the two earthquake records are in good agreement under different ground motion severity. And the percentage of structural hysteretic energy to input energy is basically stable. The distribution pattern of storey hysteretic energy through the height is that the value of the upper stories is smaller than the value of the lower stories. And the ground motion severity has a minor influence on the distribution pattern when the plasticity of structure develops more sufficiently.


2011 ◽  
Vol 90-93 ◽  
pp. 2633-2639
Author(s):  
Chang Hao Zhang ◽  
Wei Wang ◽  
Hu Wang ◽  
Xun Tao Wang

This paper examined the engineering characteristics of the near-fault ground motion. The four-story reinforced concrete frame was designed under Code for seismic design of building (GB50011-2010).The SAP2000 software was applied to model it, and the nonlinear time history analyses of structure were implemented. Near-fault ground motions with forward directivity and fling-step and far field ground motions were selected as seismic inputs.The results show that in terms of some structural dynamic response parameters, such as the vertex displacement, between the corner of the layer displacement, and the base shear et al., the structural responses to the ground motion with near-fault are increased by considerable magnitudes when the seismic responses of structures step into the elastic-plastic stage, compared with far-field ground motion, and the influence of damaging the mid-lower structure is significantly greater.


2011 ◽  
Vol 243-249 ◽  
pp. 1210-1218
Author(s):  
Guo Hui Huang ◽  
Zheng He

The beam-to-beam impact behavior during the progressive collapse progress of reinforced concrete frame structures under severe ground motions is studied in which three types of impact are included, i.e. 1) contact-impact between one-end failed active beam and intact passive beam; 2) contact-impact between two-end failed active beam and intact passive beam, and 3) contact-impact of one-end failed active beam and one-end failed passive beam. As the first step, the initial impact conditions are established based on the principles of the kinematics and the structural dynamics. Then, the velocities of the beams at the impact instant and the locations of the impact would occur are derived. A so-called impact mass factor is introduced in the paper and determined through the principle of equivalent energy. The history of contact force between the beams involved in the impact is evaluated by the Hertz-damp model. The responses of the passive beam are calculated by solving the equation of motion of a generalized single degree of freedom system.


Author(s):  
Jin Zhou ◽  
Zhelun Zhang ◽  
Tessa Williams ◽  
Sashi K. Kunnath

AbstractThe development of fragility functions that express the probability of collapse of a building as a function of some ground motion intensity measure is an effective tool to assess seismic vulnerability of structures. However, a number of factors ranging from ground motion selection to modeling decisions can influence the quantification of collapse probability. A methodical investigation was carried out to examine the effects of component modeling and ground motion selection in establishing demand and collapse risk of a typical reinforced concrete frame building. The primary system considered in this study is a modern 6-story RC moment frame building that was designed to current code provisions in a seismically active region. Both concentrated and distributed plasticity beam–column elements were used to model the building frame and several options were considered in constitutive modeling for both options. Incremental dynamic analyses (IDA) were carried out using two suites of ground motions—the first set comprised site-dependent ground motions, while the second set was a compilation of hazard-consistent motions using the conditional scenario spectra approach. Findings from the study highlight the influence of modeling decisions and ground motion selection in the development of seismic collapse fragility functions and the characterization of risk for various demand levels.


2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


2011 ◽  
Vol 255-260 ◽  
pp. 2421-2425
Author(s):  
Qiu Wei Wang ◽  
Qing Xuan Shi ◽  
Liu Jiu Tang

The randomness and uncertainty of seismic demand and structural capacity are considered in demand-capacity factor method (DCFM) which could give confidence level of different performance objectives. Evaluation steps of investigating seismic performance of steel reinforced concrete structures with DCFM are put forward, and factors in calculation formula are modified based on stress characteristics of SRC structures. A regular steel reinforced concrete frame structure is analyzed and the reliability level satisfying four seismic fortification targets are calculated. The evaluation results of static and dynamic nonlinear analysis are compared which indicates that the SRC frame has better seismic performance and incremental dynamic analysis could reflect more dynamic characteristics of structures than pushover method.


Sign in / Sign up

Export Citation Format

Share Document