A numerical method for evaluating and predicting high-temperature thermal properties of carbides

1975 ◽  
Vol 14 (3) ◽  
pp. 233-241
Author(s):  
T. Chiang ◽  
Y.A. Chang
2021 ◽  
Vol 11 (13) ◽  
pp. 6234
Author(s):  
Ciprian Neagoe ◽  
Ioan Albert Tudor ◽  
Cristina Florentina Ciobota ◽  
Cristian Bogdanescu ◽  
Paul Stanciu ◽  
...  

Microencapsulation of sodium nitrate (NaNO3) as phase change material for high temperature thermal energy storage aims to reduce costs related to metal corrosion in storage tanks. The goal of this work was to test in a prototype thermal energy storage tank (16.7 L internal volume) the thermal properties of NaNO3 microencapsulated in zinc oxide shells, and estimate the potential of NaNO3–ZnO microcapsules for thermal storage applications. A fast and scalable microencapsulation procedure was developed, a flow calorimetry method was adapted, and a template document created to perform tank thermal transfer simulation by the finite element method (FEM) was set in Microsoft Excel. Differential scanning calorimetry (DSC) and transient plane source (TPS) methods were used to measure, in small samples, the temperature dependency of melting/solidification heat, specific heat, and thermal conductivity of the NaNO3–ZnO microcapsules. Scanning electron microscopy (SEM) and chemical analysis demonstrated the stability of microcapsules over multiple tank charge–discharge cycles. The energy stored as latent heat is available for a temperature interval from 303 to 285 °C, corresponding to onset–offset for NaNO3 solidification. Charge–self-discharge experiments on the pilot tank showed that the amount of thermal energy stored in this interval largely corresponds to the NaNO3 content of the microcapsules; the high temperature energy density of microcapsules is estimated in the range from 145 to 179 MJ/m3. Comparison between real tank experiments and FEM simulations demonstrated that DSC and TPS laboratory measurements on microcapsule thermal properties may reliably be used to design applications for thermal energy storage.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4379
Author(s):  
Max Hesselbrandt ◽  
Mikael Erlström ◽  
Daniel Sopher ◽  
Jose Acuna

Assessing the optimal placement and design of a large-scale high temperature energy storage system in crystalline bedrock is a challenging task. This study applies and evaluates various methods and strategies for pre-site investigation for a potential high temperature borehole thermal energy storage (HT-BTES) system at Linköping in Sweden. The storage is required to shift approximately 70 GWh of excess heat generated from a waste incineration plant during the summer to the winter season. Ideally, the site for the HT-BTES system should be able to accommodate up to 1400 wells to 300 m depth. The presence of major fracture zones, high groundwater flow, anisotropic thermal properties, and thick Quaternary overburden are all factors that play an important role in the performance of an HT-BTES system. Inadequate input data to the modeling and design increases the risk of unsatisfactory performance, unwanted thermal impact on the surroundings, and suboptimal placement of the HT-BTES system, especially in a complex crystalline bedrock setting. Hence, it is crucial that the subsurface geological conditions and associated thermal properties are suitably characterized as part of pre-investigation work. In this study, we utilize a range of methods for pre-site investigation in the greater Distorp area, in the vicinity of Linköping. Ground geophysical methods, including magnetic and Very Low-Frequency (VLF) measurements, are collected across the study area together with outcrop observations and lab analysis on rock samples. Borehole investigations are conducted, including Thermal Response Test (TRT) and Distributed Thermal Response Test (DTRT) measurements, as well as geophysical wireline logging. Drone-based photogrammetry is also applied to characterize the fracture distribution and orientation in outcrops. In the case of the Distorp site, these methods have proven to give useful information to optimize the placement of the HT-BTES system and to inform design and modeling work. Furthermore, many of the methods applied in the study have proven to require only a fraction of the resources required to drill a single well, and hence, can be considered relatively efficient.


2016 ◽  
Vol 128 (3) ◽  
pp. 1783-1792 ◽  
Author(s):  
Zhaoli Zhang ◽  
Yanping Yuan ◽  
Liping Ouyang ◽  
Qinrong Sun ◽  
Xiaoling Cao ◽  
...  

Author(s):  
J. C. Jaeger

The object of this note is to indicate a numerical method for finding periodic solutions of a number of important problems in conduction of heat in which the boundary conditions are periodic in the time and may be linear or non-linear. One example is that of a circular cylinder which is heated by friction along the generators through a rotating arc of its circumference, the remainder of the surface being kept at constant temperature; here the boundary conditions are linear but mixed. Another example, which will be discussed in detail below, is that of the variation of the surface temperature of the moon during a lunation; in this case the boundary condition is non-linear. In all cases the thermal properties of the solid will be assumed to be independent of temperature. Only the semi-infinite solid will be considered here, though the method applies equally well to other cases.


2017 ◽  
Vol 15 (6) ◽  
pp. 190-212 ◽  
Author(s):  
Norichika Kakae ◽  
Keiichi Miyamoto ◽  
Takahiro Momma ◽  
Shohei Sawada ◽  
Hitoshi Kumagai ◽  
...  

2017 ◽  
Vol 43 (18) ◽  
pp. 16210-16216 ◽  
Author(s):  
Chonghe Xu ◽  
Kangkang Yuan ◽  
Xiaotong Jin ◽  
Zhichao Yu ◽  
Lei Zheng ◽  
...  

1970 ◽  
Vol 92 (3) ◽  
pp. 301-309 ◽  
Author(s):  
G. Angelino ◽  
E. Macchi

The computation of power cycles employing carbon dioxide as working fluid and extending down to the critical region requires the knowledge of the thermodynamic properties of CO2 within a wide range of pressures and temperatures. Available data are recognized to be insufficient or insufficiently accurate chiefly in the vicinity of the critical dome. Newly published density and specific heat measurements are employed to compute thermodynamic functions at temperatures between 0 and 50 deg C, where the need of better data is more urgent. Methods for the computation of thermal properties from density measurement in the low and in the high temperature range are presented and discussed. Results are reported of the computation of entropy and enthalpy of CO2 in the range 150–750 deg C and 40–600 atm. The probable precision of the tables is inferred from an error analysis based on the generation, by means of a computer program of a set of pseudoexperimental points which, treated as actual measurements, yield useful information about the accuracy of the calculation procedure.


Sign in / Sign up

Export Citation Format

Share Document