Comparative Study of Mechanical Properties and Residual Stress Distributions of Copper Coatings Obtained by Different Thermal Spray Processes

2001 ◽  
Vol 17 (4) ◽  
pp. 317-322 ◽  
Author(s):  
H. Gassot ◽  
T. Junquera ◽  
V. Ji ◽  
M. Jeandin ◽  
V. Guipont ◽  
...  
Author(s):  
E.F. Rybicki ◽  
J.R. Shadley ◽  
R.T.R. McGrann ◽  
A.C. Savarimuthu ◽  
D. Graving

Abstract Thermal spray coatings are subjected to mechanical loadings in many applications, and there is a need to evaluate the mechanical properties of these coatings. Mechanical properties of interest in the performance of thermal spray coatings include fatigue life, wear resistance, bond strength. Young's modulus, Poisson's ratio, and residual stresses. One property that has a large effect on the performance of thermal spray coated parts is the residual stress distribution in the thermal spray coating and in the substrate. Thus, it is important to have (1) a fundamentally sound method for evaluating residual stresses and (2) a written recommended procedure for applying the method. ASM International is not a standard writing organization. Yet, the increased use of thermal spray coatings and the need for documentation on methods for evaluating mechanical properties of thermal spray coatings have generated a need to prepare Recommended Practices. To meet this need, the ASM International Thermal Spray Society has formed three subcommittees to prepare Recommended Practices for thermal spray coatings. This paper describes a draft form of a Recommended Practice for evaluating residual stresses in thermal spray coatings. This Recommended Practice is being developed by the Subcommittee on "Evaluating of Mechanical Properties of Thermal Spray Coatings". The method, called the Modified Layer Removal Method, has been presented in several papers and has been used for a variety of different coatings. The paper describes the dimensions of the test specimen, the equipment needed, the procedure for removing layers, and the methods for collecting and interpreting the data to evaluate through thickness residual stresses. The Recommended Practice (RP) is in Draft form, but is presented to let the thermal spray community know about the RP effort and invite comments and volunteers to write other RP's.


2019 ◽  
Vol 61 (1) ◽  
pp. 56-60 ◽  
Author(s):  
Fazil Husem ◽  
Fatma Meydaneri Tezel ◽  
Muhammet Emre Turan

2009 ◽  
Vol 113 (2) ◽  
pp. 976-983 ◽  
Author(s):  
Wonbong Jang ◽  
Jongchul Seo ◽  
Choonkeun Lee ◽  
Sang-Hyon Paek ◽  
Haksoo Han

2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


Sign in / Sign up

Export Citation Format

Share Document