Simple constitutive analysis of AA 7075-T6 aluminium alloy deformed at low deformation temperatures

2012 ◽  
Vol 28 (6) ◽  
pp. 668-679
Author(s):  
E S Puchi-Cabrera ◽  
M H Staia ◽  
E Ochoa-Pérez ◽  
J G La Barbera-Sosa ◽  
Y Y Santana ◽  
...  
2016 ◽  
Vol 81 (2) ◽  
pp. 55-61 ◽  
Author(s):  
M. Ilieva ◽  
R. Radev

Purpose: The present study compares the corrosion behaviour of overaged AA 7075 before and after equal channel angular pressing ECAP in two media, containing chlorides, in order to answer the question how grain refinement of aluminium alloys influences their corrosion properties.Design/methodology/approach: The effect of equal channel angular pressing ECAP on corrosion behaviour of aluminium alloy AA 7075 was studied in two water solutions, containing chloride ions: 1) 0.01 M Na2SO4 with addition of 0.01%Cl-, and 2) 3g/l H2O2 and 57g/l NaCl. The changes in electrochemical characteristics, provoked by grain size refinement after equal channel angular pressing ECAP, were found using potentiodynamic polarisation. Steady state potential, corrosion potential, corrosion current density; breakdown (pitting) potential of overaged and deformed by equal channel angular pressing ECAP aluminium alloy AA 7075 were measured.Findings: In the environment with lower chloride concentration equal channel angular pressing ECAP process led to increase in pitting corrosion resistance and in the medium with higher chloride concentration - to decrease in pitting corrosion resistance. That way grain refinement does not demonstrate a uni-directional influence on corrosion resistance of AA 70775.Research limitations/implications: The results suggest the possibility for development of materials having the same chemical composition but with different corrosion resistance to different environments.Originality/value: The paper presents the corrosion behaviour of ultrafine-grained aluminium alloy AA 7075 and the influence of the chloride ions concentration in the corrosion medium on this behaviour.


Author(s):  
Wei Chen ◽  
Yanfei Gu ◽  
Yingping Guan ◽  
Chunfa Dong

Abstract The dynamic recrystallisation behaviour of high-titaniumcontent 6061 aluminium alloy was investigated by hot compression tests within the temperature range of 623- 783 K and at strain rates of 0.01 -10 s-1. The characteristics of the true stress-strain curves acquired in the hot compression tests were investigated, and it was observed that the dynamic recrystallisation of high-titanium-content 6061 aluminium alloy occurs within the range of deformation temperatures of 623 -783 K, with strain rates of 0.001 - 0.1 s-1as evinced by a physically-based constitutive analysis. The kinetic model of dynamic recrystallisation was deduced to describe the dynamic recrystallisation behaviour of high-titanium-content 6061 aluminium alloy, and the dynamic recrystallisation grain size model was also constructed.


Author(s):  
Abeens M ◽  
R Murugananthan

Abstract As AA 7075 T651 comprehensively is used in the marine naval vessels, the factor of corrosion performance always plays a significant role. In this work, an investigation is carried out to study the effect of corrosion behaviour of shot peened AA 7075 T651 in 3.5% solution. From the potentiodynamic polarization study, a 27.72% decrease is ascertained in the Icorr in shot peened specimen in correlation to unpeened aluminium alloy. A drop in Icorr from 1.883 to 1.480 mA/cm2 in shot peened specimen, indicates enhanced pitting corrosion resistance. An electrochemical impedance spectroscopy reveals a surge in the oxide layer formation on the peened surface aiding the drop in corrosion rate. Resistance to pit formations and improvement in oxygen deposition in the peened specimen is observed availing a Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray analysis (EDX). The micro structures of the peened and unpeened specimen are captured using optical microscopy and Transmission electron microscopy (TEM). Micro-strain, dislocation density is also calculated from the X- ray diffraction analysis (XRD), in which grain size reduces by 28.07%, dislocation density surges by 38.65% and micro strain increases by 21.95% in peened specimen in correlation to unpeened AA 7075 T651, resulting in a surge in corrosion resistance by 27.92% in the peened specimen in correlation to unpeened aluminium alloy.


2018 ◽  
Vol 13 (2) ◽  
pp. 190-197
Author(s):  
P. Sivaraja ◽  
D. Kanagarajan ◽  
V. Balasubramanian

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
A. Praveen Raj Navukkarasan ◽  
K. Shanmuga Sundaram ◽  
C. Chandrasekhara Sastry ◽  
M. A. Muthu Manickam

An attempt has been made to investigate dry and cryogenic friction stir welding of AA 7075 aluminium alloy, which is predominantly availed in aerospace and defence component industries. These industries avail friction stir welding for joining two nonferrous materials, and minimal deviations and maximum strength are the preliminary and long time goal. A cryogenic friction stir welding setup was developed to conduct the joining of two aluminium alloy pipes. An increase of 0.76–42.93% and 3.79–31.24% in microhardness and tensile strength, respectively, is ascertained in cryogenic friction stir welding in correlation to dry friction stir welding of aluminium alloys. TOPSIS evaluation for the experimental run indicated tool profile stepped type, pipe rotation speed of 1000 rpm, welding speed of 50 mm/min, and axial force of 8 kN as close to unity ideal solution for dry and cryogenic friction stir welding of AA 7075 aluminium alloys. The friction stir-welded component under the cryogenic environment showcased drop in temperature, curtailed surface roughness, and fine grain structure owing to reduction in temperature differential occurring at the weld zone. A curtailment of 50.84% is ascertained in the roughness value for cryogenic friction stir welding in correlation to dry friction stir welding of AA 7075 alloy. A decrement of 21.68% is observed in the grain size in the cryogenic condition with correlation to the dry FSW process, indicating a drop in the coarse structure. With the curtailment of grain size and drop in temperature differential, compressive residual factor and corrosion resistance attenuated by 40.14% and 67.17% in the cryogenic FSW process in correlation to the dry FSW process, respectively.


Author(s):  
D. S. Robinson Smart ◽  
J. Pradeep Kumar ◽  
Joses Jenish Smart

An effort was contrived to incorporate aluminium alloy (AA) 7075 reinforced with Silicon Nitride (Si3N4), Tantalum Carbide (TaC), and Titanium (Ti) particulates using conventional stir casting technique. The tension and creep investigations of these composite materials were analysed at room and elevated temperature to regulate their strain to failure and ultimate tensile strength (UTS). The data obtained inferred that addition of these ceramic reinforcements was naturally enhanced the mechanical and creep properties. Strength due to elongation was observed as high as 111.41 N/mm2 at 120°C when compared to unalloyed aluminium alloy. The load tests analysis reveals that the increase in reinforcement wt% of TaC and Ti combinations leads to increase in resistance for deformation failure and the composite is able to with stand 500 kg load at 120°C. The results of the creep tests shows that the ability of the material to with stand an higher cycle time of more than 30,000 seconds when the strain value is 0.02 wt% of reinforcement are 0.5% of TaC, 6% of Si3N4, and 1% of Ti.


Taguchi technique has been used to determine the most important control variables that will result in greater mechanical characteristics (tensile strength and hardness) of FSW joints of comparable AA 7075 plates. To optimize process parameters including tool rotatory speed, weld travel velocity on tensile strength and hardness of friction stir welded similar AA 7075 aluminium alloy, Taguchi Design of Experiment (DOE) and optimization method was used. The optimum levels of process parameters were identified by using the Taguchi parametric design concept. The results show that welding speed is more contributing process parameter than the rotation speed in getting optimum mechanical property (UTS and HV). The forecasted optimal values of ultimate tensile strength and hardness of friction stir welded similar AA 7075 is 197 Mpa and 93 HRB respectively. Further tests proved these results


Sign in / Sign up

Export Citation Format

Share Document