High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons

1999 ◽  
Vol 63 (2) ◽  
pp. 179-187 ◽  
Author(s):  
J. Götze ◽  
U. Kempe ◽  
D. Habermann ◽  
L. Nasdala ◽  
R. D. Neuser ◽  
...  

AbstractCathodoluminescence (CL) microscopy and spectroscopy combined with SHRIMP ion probe measurements were carried out on detrital zircons from the Cretaceous Weferlingen quartz sand (Germany) to distinguish and characterize different zircon populations.Investigations by CL microscopy, SEM-CL and BSE imaging show that there are three main types of zircons (general grain sizes of 100–200 µm): (1) apparently weakly zoned, rounded grains with relict cores, (2) well rounded fragments of optically more or less homogeneous zircon grains showing CL zoning predominantly parallel to the z-axis, and (3) idiomorphic to slightly rounded zircon grains typically showing oscillatory euhedral CL zoning. A fourth type of low abundance is characterized by well-rounded grain fragments with an irregular internal structure showing bright yellow CL.High-resolution CL spectroscopic analyses reveal that blue CL is mainly caused by an intrinsic emission band centered near 430 nm. Dy3+ is the dominant activator element in all zircons, whereas Sm3+, Tb3+, Nd3+ have minor importance. Yellow CL (emission band between 500 and 700 nm) is probably caused by electron defects localized on the [SiO4] groups (e.g. related to oxygen vacancies) or activation by Yb2+ generated by radiation. Variations of the integral SEM-CL intensity are mainly controlled by the intensity of the broad bands and the Dy3+ peaks.SHRIMP analysis provides in situ high-resolution U-Pb dating of single zircon grains and confirms different ages for the evaluated different zircon types. The measurements show that the U-Pb ages of the zircons from Weferlingen scatter over a wide range (340 to 1750 Ma), backing up earlier conclusions that the quartz sand from Weferlingen is quite heterogeneous in terms of provenance.

2019 ◽  
Vol 11 (19) ◽  
pp. 2191 ◽  
Author(s):  
Encarni Medina-Lopez ◽  
Leonardo Ureña-Fuentes

The aim of this work is to obtain high-resolution values of sea surface salinity (SSS) and temperature (SST) in the global ocean by using raw satellite data (i.e., without any band data pre-processing or atmospheric correction). Sentinel-2 Level 1-C Top of Atmosphere (TOA) reflectance data is used to obtain accurate SSS and SST information. A deep neural network is built to link the band information with in situ data from different buoys, vessels, drifters, and other platforms around the world. The neural network used in this paper includes shortcuts, providing an improved performance compared with the equivalent feed-forward architecture. The in situ information used as input for the network has been obtained from the Copernicus Marine In situ Service. Sentinel-2 platform-centred band data has been processed using Google Earth Engine in areas of 100 m × 100 m. Accurate salinity values are estimated for the first time independently of temperature. Salinity results rely only on direct satellite observations, although it presented a clear dependency on temperature ranges. Results show the neural network has good interpolation and extrapolation capabilities. Test results present correlation coefficients of 82 % and 84 % for salinity and temperature, respectively. The most common error for both SST and SSS is 0.4 ∘ C and 0 . 4 PSU. The sensitivity analysis shows that outliers are present in areas where the number of observations is very low. The network is finally applied over a complete Sentinel-2 tile, presenting sensible patterns for river-sea interaction, as well as seasonal variations. The methodology presented here is relevant for detailed coastal and oceanographic applications, reducing the time for data pre-processing, and it is applicable to a wide range of satellites, as the information is directly obtained from TOA data.


2002 ◽  
Vol 8 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Pratibha L. Gai

We present the development of in situ wet environmental transmission electron microscopy (Wet-ETEM) for direct probing of controlled liquid–catalyst reactions at operating temperatures on the nanoscale. The first nanoscale imaging and electron diffraction of dynamic liquid hydrogenation and polymerization reactions in the manufacture of polyamides reported here opens up new opportunities for high resolution studies of a wide range of solution–solid and solution–gas–solid reactions in the chemical and biological sciences.


2021 ◽  
Author(s):  
Andrea Fischer ◽  
Bernd Seiser ◽  
Kay Helfricht ◽  
Martin Stocker-Waldhuber

Abstract. Eastern Alpine glaciers have been receding since the LIA maximum, but the majority of glacier margins could be delineated unambiguously for the last Austrian glacier inventories. Even debris-covered termini, changes in slope, colour or the position of englacial streams enabled at least an in situ survey of glacier outlines. Today the outlines of totally debris-covered glacier ice are fuzzy and raise the theoretical discussion if these glaciogenic features are still glaciers and should be part of the respective inventory – or part of an inventory of transient cryogenic landforms. A new high-resolution glacier inventory (area and surface elevation) was compiled for the years 2017 and 2018 to quantify glacier changes for the Austrian Silvretta region in full. Glacier outlines were mapped manually, based on orthophotos and elevation models and patterns of volume change of 1 to 0.5 m spatial resolution. The vertical accuracy of the DEMs generated from 6 to 8 LiDAR points per m2 is in the order of centimetres. calculated in relation to the previous inventories dating from 2004/2006 (LiDAR), 2002, 1969 (photogrammetry) and to the Little Ice Age maximum extent (moraines). Between 2004/06 and 2017/2018, the 46 glaciers of the Austrian Silvretta lost −29 ± 4 % of their area and now cover 13.1 ± 0.4 km2. This is only 32 ± 2 % of their LIA extent of 40.9 ± 4.1 km2. The area change rate increased from −0.6 %/year (1969–2002) to −2.4 %/year (2004/06–2017/18). The annual geodetic mass balance showed a loss increasing from −0.2 ± 0.1 m w.e./year (1969–2002) to –0.8 m ±0.1 w.e./year (2004/06–2017/18) with an interim peak in 2002–2004/06 at −1.5 ± 0.7 m w.e./year. Identifying the glacier outlines offers a wide range of possible interpretations of former glaciers that have evolved into small and now totally debris-covered cryogenic geomorphological structures. Only the patterns and amounts of volume changes allow us to estimate the area of the buried glacier remnants. To keep track of the buried ice and its fate, and to distinguish increasing debris cover from ice loss, we recommend inventory repeat frequencies of three to five years and surface elevation data with a spatial resolution of one metre.


Author(s):  
Stephen Moorbath ◽  
Balz Samuel Kamber

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Moorbath, S., & Kamber, B. S. (1998). A reassessment of the timing of early Archaean crustal evolution in West Greenland. Geology of Greenland Survey Bulletin, 180, 88-93. https://doi.org/10.34194/ggub.v180.5091 _______________ In last year’s Review of Greenland activities, Kalsbeek (1997) divided the recent history of geochronology into three successive periods: 1. single-sample K-Ar and Rb-Sr mineral or whole-rock age determinations; 2. Rb-Sr and Pb/Pb whole-rock isochrons and multigrain zircon U-Pb isotope data; 3. the present, where ‘single’ zircon U-Pb data are predominantly used. To these three, we would propose adding a fourth, namely a combination of all three, in order to achieve the maximum age information within complex terrains. For an early Precambrian terrain like that of West Greenland, we consider that the combined use of at least the last two approaches is essential (to which should be added the Sm-Nd method). In recent years, study of the geochronological evolution of the Godthåbsfjord and Isua regions has been dominated by rapid and precise ion-probe U-Pb dating of complex-structured zircons, and it has become fashionable to regard the wide range of zircon dates, and particularly the oldest, as giving the age of rock formation. Dates obtained from whole-rock Rb-Sr, Sm-Nd and Pb/Pb regressions have been regarded as too imprecise for adequate age resolution, whilst constraints on crustal evolution imposed by initial Sr, Nd and Pb isotope ratios have been summarily dismissed or totally ignored. We consider that this sole dependence on ion-probe dating of zircon can lead (as, indeed, in the early Archaean of West Greenland) to a potential misinterpretation of the timing of crustal evolution, especially in those cases where little or no information regarding the relationship between measured date and internal grain structure is available. Figure 1 shows the localities mentioned in the text.


2020 ◽  
Author(s):  
Majid Bayati ◽  
Mohammad Danesh-Yazdi

<p>The spatiotemporal dynamics of salinity in hypersaline lakes is strongly dependent on the rate of water flow feeding the lake, evaporation rate, and the phenomena of precipitation and dissolution. Although in-situ observations are most reliable in quantifying water quality variables, the spatiotemporal distribution of such data are typically limited or cannot be readily extrapolated for long-term projections. Alternatively, remotely-sensed imagery has facilitated less expensive and stronger ability to estimate water quality over a wide range of spatiotemporal resolutions. This study introduces a machine learning model that leverages in-situ measurements and high-resolution satellite imagery to estimate the salinity concentration in water bodies. To this end, 123 points were sampled in April and July of 2019 across the Lake Urmia surface covering the wide range of salinity fluctuations. Among the artificial neural networks, ANFIS, and linear regression tools examined to determine the relationship between salinity and surface reflectance, artificial neural networks yielded the best accuracy evidenced by R<sup>2</sup> = 0.94 and RMSE = 6.8%. The results show that the seasonal change of salinity is linearly correlated with the volume of water feeding the lake, witnessing that dilution imposes a stronger control on the salinity than bed salt dissolution. The impact of disturbance in the lake circulation due to the causeway is also evident from the sharp changes of salinity around the bridge piers near spring when the mixing of fresh and hypersaline water from the southern and northern parts, respectively, takes place. The results of this study prove the promising potential of machine learning tools fed multi-spectral satellite information to map other water quality metrics than salinity as well.</p>


2002 ◽  
Vol 184 (1-2) ◽  
pp. 151-165 ◽  
Author(s):  
Delphine Bosch ◽  
Dalila Hammor ◽  
Olivier Bruguier ◽  
Renaud Caby ◽  
Jean-Marc Luck
Keyword(s):  

2002 ◽  
Vol 35 ◽  
pp. 299-305 ◽  
Author(s):  
Geneviève C. Littot ◽  
Robert Mulvaney ◽  
Regine Röthlisberger ◽  
Roberto Udisti ◽  
Eric W. Wolff ◽  
...  

AbstractIn the past, ionic analyses of deep ice cores tended to consist of a few widely spaced measurements that indicated general trends in concentration. the ion-chromatographic methods widely used provide well-validated individual data, but are time-consuming. the development of continuous flow analysis (CFA) methods has allowed very rapid, high-resolution data to be collected in the field for a wide range of ions. In the European Project for Ice Coring in Antarctica (EPICA) deep ice-core drilling at Dome C, many ions have been measured at high resolution, and several have been analyzed by more than one method. the full range of ions has been measured in five different laboratories by ion chromatography (IC), at resolutions of 2.5–10 cm. In the field, CFA was used to measure the ions Na+, Ca2+, nitrate and ammonium. Additionally, a new semi-continuous in situ IC method, fast ion chromatography (FIC), was used to analyze sulphate, nitrate and chloride. Some data are now available to 788 m depth. In this paper we compare the data obtained by the three methods, and show that the rapid methods (CFA and FIC) give an excellent indication of trends in ionic data. Differences between the data from the different methods do occur, and in some cases these are genuine, being due to differences in speciation in the methods. We conclude that the best system for most deep ice-core analysis is a rapid system of CFA and FIC, along with in situ meltwater collection for analysis of other ions by IC, but that material should be kept aside for a regular check on analytical quality and for more detailed analysis of some sections.


2020 ◽  
Author(s):  
Bar Elisha ◽  
Perach Nuriel ◽  
Andrew Kylander-Clark ◽  
Ram Weinberger

Abstract. Recent U–Pb dating by laser ablation ICP-MS has demonstrated that reasonable precision (3–10 % 2σ) can be achieved for high-resolution dating of texturally distinct calcite phases. Absolute dating of dolomite, for which biostratigraphy and traditional dating techniques are very limited, remains challenging but may resolve many fundamental questions related to the timing of mineral-rock formation by syngenetic, diagenesis, hydrothermal, and epigenetic processes. In this study we explore the possibility of dating dolomitic rocks via recent LA-ICP-MS dating techniques developed for calcite. The in-situ U–Pb dating was tested on a wide range of dolomite rocks of various origins (i.e., syngenetic, early diagenetic and epigenetic) from the Cambrian to Pliocene age – all of which from well-constrained stratigraphic sections in Israel. We present in-situ U–Pb results of dolomitic rock samples, together with imaging techniques and chemical characterizations. We show that dolomite dating is highly sensitive to textural differences and highlight parameters such as crater morphology and roughness, calcite zoning and impurities that may affect the interpretation of the resulted ages. Textural examination indicates zonation and mixing of different phases at the sub-millimeter scale (


Sign in / Sign up

Export Citation Format

Share Document