scholarly journals Triple Oxygen Isotope Trend Recorded by Precambrian Cherts: A Perspective from Combined Bulk and in situ Secondary Ion Probe Measurements

2021 ◽  
Vol 86 (1) ◽  
pp. 323-365 ◽  
Author(s):  
D. O. Zakharov ◽  
J. Marin-Carbonne ◽  
J. Alleon ◽  
I. N. Bindeman
2021 ◽  
Vol 8 ◽  
Author(s):  
Nordine Bouden ◽  
Johan Villeneuve ◽  
Yves Marrocchi ◽  
Etienne Deloule ◽  
Evelyn Füri ◽  
...  

Secondary ion mass spectrometry (SIMS) is a powerful technique for in situ triple oxygen isotope measurements that has been used for more than 30 years. Since pioneering works performed on small-radius ion microprobes in the mid-80s, tremendous progress has been made in terms of analytical precision, spatial resolution and analysis duration. In this respect, the emergence in the mid-90s of the large-radius ion microprobe equipped with a multi-collector system (MC-SIMS) was a game changer. Further developments achieved on CAMECA MC-SIMS since then (e.g., stability of the electronics, enhanced transmission of secondary ions, automatic centering of the secondary ion beam, enhanced control of the magnetic field, 1012Ω resistor for the Faraday cup amplifiers) allow nowadays to routinely measure oxygen isotopic ratios (18O/16O and 17O/16O) in various matrices with a precision (internal error and reproducibility) better than 0.5‰ (2σ), a spatial resolution smaller than 10 µm and in a few minutes per analysis. This paper focuses on the application of the MC-SIMS technique to the in situ monitoring of mass-independent triple oxygen isotope variations.


1974 ◽  
Vol 29 (6) ◽  
pp. 897-900 ◽  
Author(s):  
A. Lodding ◽  
J.-M. Gourgout ◽  
L. G. Petersson ◽  
G. Frostell

In studies of F concentrations in apatite crystals by means of secondary ion micro-analysis, it is found that even in a sample with a known and constant F/Ca ratio the recorded ratios of the F and Ca secondary ion currents can vary widely, depending on the experimental conditions of primary bombardment. An attempt has been to explain this behaviour and to devise a way to obtain quantitative atomic F to Ca ratios independent on measuring conditions. Simultaneous recording of the mass peaks of F+, Ca+ and another matrix ion (P+ or C++) appears to offer a solution of the reproducibility problem. This is demonstrated by ion probe measurements under varied conditions in three groups of materials where the F concentrations had previously been determined by macroscopic methods: apatite crystals with about 3% F, whale teeth of about 10-1 % F, and human enamel ob about 10-2 % F.


Author(s):  
Changhong Wang ◽  
Zhaochong Zhang ◽  
Andrea Giuliani ◽  
Zhiguo Cheng ◽  
Bingxiang Liu ◽  
...  

Abstract Aillikites are carbonate-rich ultramafic lamprophyres often associated with carbonatites. Despite their common field relationships, the petrogenetic links, if any, between aillikites and carbonatites remain controversial. To address this question, this study reports the results of a detailed geochemical and isotopic examination of the Permian Wajilitag aillikites in the northwestern Tarim large igneous province, including bulk-rock major-, trace-element and Sr-Nd isotope compositions, olivine major- and trace-element and (in-situ secondary ion mass spectrometry) oxygen isotope compositions, oxygen isotope data for clinopyroxene separates, and bulk-carbonate C-O isotopic analyses. Olivine in the aillikites occurs in two textural types: (i) microcrysts, 0.3-5 mm; and (ii) macrocrysts, 0.5-2.5 cm. The microcrysts exhibit well-defined linear correlations between Fo (79-89), minor and trace elements (e.g., Ni = 1304-3764 μg/g and Mn = 1363-3042 μg/g). In contrast, the olivine macrocrysts show low Fo79-81, Ni (5.3-442 μg/g) and Ca (477-1018 μg/g) and very high Mn (3418-5123 μg/g) contents, and are displaced from the compositional trend of the microcrysts. The microcrysts are phenocrysts crystallized from the host aillikite magmas. Conversely, the lack of mantle-derived xenoliths in these aillikites suggests that the macrocrysts probably represent cognate crystals (i.e., antecrysts) that formed from earlier, evolved aillikite melts. Olivine phenocrysts in the more primitive aillikite dykes (Dyke 1) have relatively higher Fo82-89 and mantle-like oxygen isotope values, whereas those in the more evolved dykes (Dyke 2 and 3) exhibit lower Fo79-86 and oxygen isotope values that trend toward lower than mantle δ18O values. The decreasing δ13C values of carbonate from Dyke 1 through to Dyke 2 and 3, coupled with the indistinguishable Sr-Nd isotopes of these dykes, suggest that the low δ18O values of olivine phenocrysts in Dyke 2 and 3 resulted from carbonate melt/fluid exsolution from a common progenitor melt. These lines of evidence combined with the overlapping emplacement ages and Sr-Nd isotope compositions of the aillikites and carbonatites in this area suggest that these exsolved carbonate melts probably contributed to the formation of the Tarim carbonatites thus supporting a close petrogenetic relationship between aillikites and carbonatites.


The ion probe is particularly suitable for localized trace element analysis, owing to the very low background in the secondary ion mass spectrum. It is therefore worth exploring the possibilities of the technique in relation to trace element distributions in meteorites, in cases where the sensitivity of the electron probe is inadequate. Ion probe measurements of Ni in olivine in pallasites show concentrations in the range 20-35 µg g- 1 and a diffusion profile in Eagle Station olivine grains has been observed, the central Ni content being higher than that at the edge. In Glorieta Mountain the opposite trend is seen and there is an inverse grain-size correlation (small grains having the highest Ni content) indicating a different thermal history. The trace element Ga, which is important in connection with iron meteorite classification, is well suited to ion probe analysis and is found to be strongly concentrated in taenite in both iron meteorites and chondrites.


1999 ◽  
Vol 63 (2) ◽  
pp. 179-187 ◽  
Author(s):  
J. Götze ◽  
U. Kempe ◽  
D. Habermann ◽  
L. Nasdala ◽  
R. D. Neuser ◽  
...  

AbstractCathodoluminescence (CL) microscopy and spectroscopy combined with SHRIMP ion probe measurements were carried out on detrital zircons from the Cretaceous Weferlingen quartz sand (Germany) to distinguish and characterize different zircon populations.Investigations by CL microscopy, SEM-CL and BSE imaging show that there are three main types of zircons (general grain sizes of 100–200 µm): (1) apparently weakly zoned, rounded grains with relict cores, (2) well rounded fragments of optically more or less homogeneous zircon grains showing CL zoning predominantly parallel to the z-axis, and (3) idiomorphic to slightly rounded zircon grains typically showing oscillatory euhedral CL zoning. A fourth type of low abundance is characterized by well-rounded grain fragments with an irregular internal structure showing bright yellow CL.High-resolution CL spectroscopic analyses reveal that blue CL is mainly caused by an intrinsic emission band centered near 430 nm. Dy3+ is the dominant activator element in all zircons, whereas Sm3+, Tb3+, Nd3+ have minor importance. Yellow CL (emission band between 500 and 700 nm) is probably caused by electron defects localized on the [SiO4] groups (e.g. related to oxygen vacancies) or activation by Yb2+ generated by radiation. Variations of the integral SEM-CL intensity are mainly controlled by the intensity of the broad bands and the Dy3+ peaks.SHRIMP analysis provides in situ high-resolution U-Pb dating of single zircon grains and confirms different ages for the evaluated different zircon types. The measurements show that the U-Pb ages of the zircons from Weferlingen scatter over a wide range (340 to 1750 Ma), backing up earlier conclusions that the quartz sand from Weferlingen is quite heterogeneous in terms of provenance.


2020 ◽  
Author(s):  
Feifei Jia ◽  
Jie Wang ◽  
Yanyan Zhang ◽  
Qun Luo ◽  
Luyu Qi ◽  
...  

<p></p><p><i>In situ</i> visualization of proteins of interest at single cell level is attractive in cell biology, molecular biology and biomedicine, which usually involves photon, electron or X-ray based imaging methods. Herein, we report an optics-free strategy that images a specific protein in single cells by time of flight-secondary ion mass spectrometry (ToF-SIMS) following genetic incorporation of fluorine-containing unnatural amino acids as a chemical tag into the protein via genetic code expansion technique. The method was developed and validated by imaging GFP in E. coli and human HeLa cancer cells, and then utilized to visualize the distribution of chemotaxis protein CheA in E. coli cells and the interaction between high mobility group box 1 protein and cisplatin damaged DNA in HeLa cells. The present work highlights the power of ToF-SIMS imaging combined with genetically encoded chemical tags for <i>in situ </i>visualization of proteins of interest as well as the interactions between proteins and drugs or drug damaged DNA in single cells.</p><p></p>


Author(s):  
O. Mousis ◽  
D. H. Atkinson ◽  
R. Ambrosi ◽  
S. Atreya ◽  
D. Banfield ◽  
...  

AbstractRemote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our Solar System. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe. Here we describe the main scientific goals to be addressed by the future in situ exploration of Saturn, Uranus, and Neptune, placing the Galileo probe exploration of Jupiter in a broader context. An atmospheric entry probe targeting the 10-bar level would yield insight into two broad themes: i) the formation history of the giant planets and that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. An atmospheric probe could represent a significant ESA contribution to a future NASA New Frontiers or flagship mission to be launched toward Saturn, Uranus, and/or Neptune.


Sign in / Sign up

Export Citation Format

Share Document