Synthesis of an NaY zeolite molecular sieve from a kaolin/dimethyl sulfoxide intercalation composite

Clay Minerals ◽  
2021 ◽  
Vol 56 (1) ◽  
pp. 28-36
Author(s):  
Shu-Qin Zheng ◽  
Ou Chen ◽  
Si-Cheng Liu ◽  
An Li ◽  
Li-Jun Li ◽  
...  

AbstractNaY zeolite was synthesized from kaolin/dimethyl sulfoxide (DMSO) intercalation composites using an in situ crystallization technique. The effects of the intercalation ratios and the amounts of the kaolin/DMSO intercalation composite on the synthesis of an NaY zeolite molecular sieve were studied. The samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, N2 adsorption–desorption and scanning electron microscopy. In the in situ synthesis system, when the kaolin/DMSO intercalation composite was added, pure NaY zeolite was formed. By increasing the amount of kaolin/DMSO intercalation composite added, the crystallinity of the samples increased, and after reaching the maximum amount of kaolin/DMSO intercalation composite added, the crystallinity decreased with further increases of the amount of kaolin/DMSO intercalation composite added. To higher intercalation ratio, the crystallinity can be greatly improved at the lower addition content. At an intercalation ratio of 84%, the added amount of kaolin/DMSO intercalation composite was 2.5% and the crystallinity of the NaY zeolite molecular sieve reached a maximum value of 45%. At intercalation ratios of 55% and 22%, the amount of kaolin/DMSO intercalation composite added was 15% and the crystallinities of the NaY zeolite molecular sieves were 44% and 47%, respectively. The NaY zeolite has good thermal stability and a particle diameter of ~0.5 μm. The Brunauer–Emmett–Teller (BET) specific surface area and pore volume of the sample were 519 m2 g–1 and 0.355 cm3 g–1, respectively.

2018 ◽  
Vol 24 (3) ◽  
pp. 161
Author(s):  
Asir Alnaama

Nanocrystalline aluminophosphate AlPO4-5 molecular sieves were synthesized by hydrothermal method (HTS). Synthesis parameters like time and temperature of crystallization were investigated. Type of template (R) and ratio of R/P2O5 were studied also. Characterization of the synthesized AlPO4-5 were done by powder X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), Fourier transform infrared (FTIR), differential scanning calorimetry-thermogravimetry analysis (DSC-TGA), and N2 adsorption-desorption BET analysis. XRD patterns results showed excellent crystallinity for two types of templates, di-n-propylamine (DPA) and tetrapropyl ammonium hydroxide (TPAOH) for alumminophosphate five (AFI) structure. Nano-level for particle size of 66 nm was revealed by AFM test. Good thermal stability was obtained in DSC-TGA results. Best time and temperature of crystallization of 24h and 190 O C were got. Optimum R/P2O5 for two kind of template was established.  


2013 ◽  
Vol 773 ◽  
pp. 263-266 ◽  
Author(s):  
Xiao Rong Zhao ◽  
Li Hua Zhu ◽  
He Qing Tang

Cobalt modified rectorite (Co@R) was prepared from sodium saturated rectorite (Na-R) with a two-step method of microwave-assisted ion-exchange and in-situ hydrolysis. The morphology, composite structure and pore properties of Co@R were observed with scanning electron microscopy (SEM), small angle X-ray Diffraction (XRD) and nitrogen adsorption-desorption isotherm. The adsorption ability and catalytic behavior of Co@R were studied with methyl blue (MB) as probe contaminant. The interstratified layered Na-R was stripped fully and the resultant material remained the layered structure with a slit-shaped pore between the layers of lamellar particles. The interlayer spacingd001of rectorite was increased successfully from 2.23 nm up to 2.72 nm. The Co@R has a BJH pore volume of 0.091 cm3g-1resulting from the macropores and BET specific surface area of 28.5 m2g-1. A set of test has shown that Co@R possesses the potential to become a good adsorbent and catalyst for activating peroxymonosulfate (PMS), removing organic pollutants efficiently.


2014 ◽  
Vol 67 (10) ◽  
pp. 1387 ◽  
Author(s):  
Shi-Qiang Bai ◽  
Lu Jiang ◽  
Sheng-Li Huang ◽  
Ming Lin ◽  
Shuang-Yuan Zhang ◽  
...  

Composite Pd/Fe3O4 (1) was designed and synthesised by immobilization of tridentate pincer ligands with triethoxysilane groups on Fe3O4 nanoparticles, PdII complexation, and in-situ reduction process. The composite was characterised by transmission electron microscopy, scanning electron microscopy energy-dispersive X-ray spectroscopy, powder X-ray diffraction, vibrating sample magnetometer, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The composite featured Pd nanoparticles of ~2–4 nm, exhibited good thermal stability and hydrophilic property as well as excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol in water.


Clay Minerals ◽  
2002 ◽  
Vol 37 (3) ◽  
pp. 451-456 ◽  
Author(s):  
F. Ohashi ◽  
S.-I . Wada ◽  
M. Suzuki ◽  
M. Maeda ◽  
S. Tomura

AbstractThe amorphous aluminosilicate allophane was synthesized by rapid mixing of inorganic solutions with high initial concentrations (10 – 100 mmol/l) followed by hydrothermal treatment. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed homogeneous products having a hollow spherical amorphous structure with a particle diameter of 3 – 5 nm. The amorphous products had a high BET specific surface area (490 – 552 m2/g) in comparison with natural allophane and had a narrow pore-size distribution (2 – 5 nm in diameter). The results of water vapour adsorption isotherm studies showed a gradual increase over the range of relative water vapour pressure of 0.6 – 0.9 and reached a maximum of ∼85 wt.%. The synthetic allophane shows promise as an adsorbent material because of its high adsorption-desorption capacity and its unique structure.


Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 155 ◽  
Author(s):  
Zhenheng Diao ◽  
Lushi Cheng ◽  
Xu Hou ◽  
Di Rong ◽  
Yanli Lu ◽  
...  

Hierarchical HZSM-5 membranes were prepared on the inner wall of stainless steel tubes, using amphiphilic organosilane (TPOAC) and mesitylene (TMB) as a meso-porogen and a swelling agent, respectively. The mesoporosity of the HZSM-5 membranes were tailored via formulating the TPOAC/Tetraethylorthosilicate (TPOAC/TEOS) ratio and TMB/TPOAC ratio, in synthesis gel, and the prepared membranes were systematically characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), N2 adsorption–desorption, N2 permeation, inductively coupled plasma (ICP), in situ fourier transform infrared (FT-IR), ammonia temperature-programmed desorption (NH3-TPD), etc. It was found that the increase of the TPOAC/TEOS ratio promoted a specific surface area and diffusivity of the HZSM-5 membranes, as well as decreased acidity; the increase of the TMB/TPOAC ratios led to an enlargement of the mesopore size and diffusivity of the membranes, but with constant acid properties. The catalytic performance of the prepared HZSM-5 membranes was tested using the catalytic cracking of supercritical n-dodecane (500 °C, 4 MPa) as a model reaction. The hierarchical membrane with the TPOAC/TEOS ratio of 0.1 and TMB/TPOAC ratio of 2, exhibited superior catalytic performances with the highest activity of up to 13% improvement and the lowest deactivation rate (nearly a half), compared with the microporous HZSM-5 membrane, due to the benefits of suitable acidity, together with enhanced diffusivity of n-dodecane and cracking products.


1992 ◽  
Vol 196 (3-4) ◽  
pp. 267-273 ◽  
Author(s):  
Heyong He ◽  
Paul Barnes ◽  
Juliet Munn ◽  
Xavier Turrillas ◽  
Jacek Klinowski

2013 ◽  
Vol 779-780 ◽  
pp. 201-204
Author(s):  
Miao Li ◽  
Hong Wang ◽  
Xian Qing Li ◽  
Jin Rong Liu

Ordered hexagonally mesoporous molecular sieve Al-MCM-41 with Si/Al (atom) ratio=9 was prepared by hydrothermal synthesis using raw kaolin. X-ray diffraction (XRD), Nitrogen adsorption desorption, Transmission Electron Microscope (TEM) and Energy Dispersive X-ray Detector (EDX) were employed to characterise raw kaolin, calcined kaolin, as-synthesized and calcined Al-MCM-41. The results indicated that characteristic reflections of raw kaolin disappeared after calcination, both of as-synthesized and calcined Al-MCM-41 exhibited well ordered hexagonally mesoporous molecular sieve structure.


NANO ◽  
2013 ◽  
Vol 08 (05) ◽  
pp. 1350050
Author(s):  
MIN GUAN ◽  
HAI-PENG BI ◽  
ZUYUAN WANG ◽  
SHAOHUA BU ◽  
LING HUANG ◽  
...  

Mesoporous silicas SBA-15 are modified with β-Cyclodextrins (β-CD) by simple grafting method. β-CD functionalized SBA-15 was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), nitrogen adsorption–desorption measurements, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Furthermore, the applicability of it is investigated through studying the adsorption properties of clenbuterol. It showed better adsorption capacities of clenbuterol than pure SBA-15. β-CD functionalized SBA-15 material has the potential applications in the treatment of clenbuterol contamination in food and environment science.


1992 ◽  
Vol 57 (4) ◽  
pp. 750-755 ◽  
Author(s):  
Liao Changsheng

Two kinds of crystalline microporous metal aluminophosphate molecular sieves, magnesium cobalt aluminophosphate (MgCoAPO-5) and manganese cobalt aluminophosphate (MnCoAPO-5), were synthesized by hydrothermal crystallization method in order to improve the surface acidity and catalytic activity of AlPO4-5. The results of X-ray diffraction, infrared spectra and chemical compositions of MgCoAPO-5 and MnCoAPO-5 indicate that Mg-Co or Mn-Co enter the framework of AlPO4-5 molecular sieve without disrupting the microporous framework. However, the results of catalytic studies show that MgCoAPO-5 and MnCoAPO-5 possess much higher surface acidity and catalytic activity than the unmodified AlPO4-5.


Author(s):  
Zoya Moslempour ◽  
Sepehr Sadighi ◽  
Ali Dashti ◽  
Ali Ahmadpour

Abstract To study the affinity of 3A aluminosilicate adsorbents to prevent oligomerization of olefin molecules and forming green oil, physical and chemical properties of 3A molecular sieves are measured by using characterization techniques such as temperature-programmed desorption (TPD), nitrogen (N2) and water adsorptions, X-ray diffraction (XRD), X-ray fluorescence (XRF), crushing strength, and carbon dioxide (CO2) adsorption. Moreover, coke formation affinities of the understudy adsorbents are evaluated in a bench-scale system using 1-butene and 1,3-butadiene at temperatures of 220 and 260 °C, and outcomes are validated against the actual data gathered from an industrial scale olefin dehydration plant. Results confirm that the type of binder and the amount of ion exchange affect the performance of a 3A molecular sieve nominated for dehydrating olefinic streams. The binder with the least amount of acidity is preferred, and at least 35% of Na ions of the 4A zeolite should be exchanged with K ions to make it applicable for synthesizing an appropriate 3A molecular sieve. Furthermore, to control the oligomerization and inhibit green oil formation, the CO2 adsorption and acidity of Trisiv shape molecular sieves with the sizes of 1/4 inch should be less than 0.5 wt % and 1.7 mmol NH3/g, respectively. For extrudate shape with the sizes of 1/16 inch CO2 adsorption and acidity should be less than 0.2 wt % and 2.2 mmol NH3/g, respectively.


Sign in / Sign up

Export Citation Format

Share Document