Synthesis and Characterization of Mesoporous Molecular Sieve Al-MCM-41 Using Kaolin as Raw Material

2013 ◽  
Vol 779-780 ◽  
pp. 201-204
Author(s):  
Miao Li ◽  
Hong Wang ◽  
Xian Qing Li ◽  
Jin Rong Liu

Ordered hexagonally mesoporous molecular sieve Al-MCM-41 with Si/Al (atom) ratio=9 was prepared by hydrothermal synthesis using raw kaolin. X-ray diffraction (XRD), Nitrogen adsorption desorption, Transmission Electron Microscope (TEM) and Energy Dispersive X-ray Detector (EDX) were employed to characterise raw kaolin, calcined kaolin, as-synthesized and calcined Al-MCM-41. The results indicated that characteristic reflections of raw kaolin disappeared after calcination, both of as-synthesized and calcined Al-MCM-41 exhibited well ordered hexagonally mesoporous molecular sieve structure.

2006 ◽  
Vol 60 (21-22) ◽  
pp. 2682-2685 ◽  
Author(s):  
Marcelo J.B. Souza ◽  
Antonio S. Araujo ◽  
Anne M.G. Pedrosa ◽  
Bojan A. Marinkovic ◽  
Paula M. Jardim ◽  
...  

2013 ◽  
Vol 781-784 ◽  
pp. 215-218
Author(s):  
Xue Ding ◽  
Xi Chang Yu ◽  
Hai Xia Sun

Mesoporous molecular sieve MCM-41 was modified by using 3-mercaptopropyltriethoxysilane as a coupling agent and MCM-41 functionalized with sulfonic acid groups was prepared. The prepared product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption-desorption technique and temperature programmed desorption. The results showed that during the process of modification the frameworks of the molecular sieve were not destroyed, the channel has ordered property. SH group was successfully grafted to the surface of channels of the molecular sieve. The acid amount on the mesoporous material functionalized with sulfonic acid groups reached 0.755mmol/g, showing a potential application foreground as a catalyst.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aidong Tang ◽  
Yuehua Deng ◽  
Jiao Jin ◽  
Huaming Yang

A novel nanocomposite ZnFe2O4-TiO2/MCM-41 (ZTM) was synthesized by a sol-gel method and characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2adsorption-desorption, Raman spectroscopy, and ultraviolet visible (UV-vis) spectrophotometry. The results confirmed the incorporation of ZnFe2O4-TiO2nanoparticles inside the pores of the mesoporous MCM-41 host without destroying its integrity. ZnFe2O4nanoparticles can inhibit the transformation of anatase into rutile phase of TiO2. Incorporation of ZnFe2O4-TiO2within MCM-41 avoided the agglomeration of nanoparticles and reduced the band gap energy of TiO2to enhance its visible light photocatalytic activity. UV-vis absorption edges of ZTM nanocomposites redshifted with the increase of Zn/Ti molar ratio. The nanocomposite approach could be a potential choice for enhancing the photoactivity of TiO2, indicating an interesting application in the photodegradation and photoelectric fields.


2010 ◽  
Vol 93-94 ◽  
pp. 22-26 ◽  
Author(s):  
Surachai Artkla ◽  
Won Yong Choi ◽  
Jatuporn Wittayakun

This work compared properties and catalytic performance of two hybrid photocatalysts, TiO2/RH-MCM-41 and TiO2/TEOS-MCM-41 prepared by loading nanoparticles of TiO2 (10 wt.%) on MCM-41 synthesized with rice husk silica and tetraethyl orthosilicate respectively. The supports and catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, transmission electron microscopy and zeta potential. The photocatalytic activities of the TiO2/RH-MCM-41 and TiO2/TEOS-MCM-41 for the degradation of tetramethylammonium (TMA) in aqueous slurry were similar with a complete conversion after irradiation time of 90 min at pH 7.


2017 ◽  
Vol 373 ◽  
pp. 299-302
Author(s):  
Bo Zhou ◽  
Chong Yang Li ◽  
Ning Qi ◽  
Zhi Quan Chen

Porous ZnO were synthesized with soft template method using zinc acetate Zn (CH3COO)2·2H2O as precursor and block copolymer F127 as the surfactant. Nitrogen adsorption-desorption measurements indicate that the ZnO sample contains large pores with mean diameter of about 30 nm. However, both small-angle X-ray diffraction and transmission electron microscope measurements indicate that the pore ordering is missing. Positron lifetime measurements reveal two long lifetime components in the porous ZnO. The longest lifetime τ4 (75 ns) corresponds to ortho-positronium (o-Ps) annihilation in large pores. The pore size estimated from τ4 is about 10.6 nm. This is much smaller than that estimated from Nitrogen adsorption-desorption measurements. In addition, the intensity I4 is only about 2.2%. This is probably due to the chemical quenching and/or inhibition of positronium formation induced by ZnO, which reduces o-Ps lifetime and intensity, and leads to under estimation of the pore size.


2015 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhaoqi Pan ◽  
Junyu Zeng ◽  
Bingyan Lan ◽  
Laisheng Li

AbstractArgentum-loaded MCM-41 (Ag/MCM-41) was synthesized successfully by a hydrothermal method and used as a catalyst for the ozonation of p-chlorobenzoic acid (p-CBA) in aqueous solution. Ag/MCM-41 was characterized by low angle X-ray diffraction (XRD), nitrogen adsorption-desorption and transmission electron microscopy (TEM). Characterizations suggest that the prepared samples retained a highly regulated mesopores of hexagonal structure and a high BET surface area. The influences of argentum content, initial pH, reaction temperature on the catalytic ozonation were also evaluated. Ag/MCM-41/O


NANO ◽  
2013 ◽  
Vol 08 (05) ◽  
pp. 1350050
Author(s):  
MIN GUAN ◽  
HAI-PENG BI ◽  
ZUYUAN WANG ◽  
SHAOHUA BU ◽  
LING HUANG ◽  
...  

Mesoporous silicas SBA-15 are modified with β-Cyclodextrins (β-CD) by simple grafting method. β-CD functionalized SBA-15 was characterized by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), nitrogen adsorption–desorption measurements, thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Furthermore, the applicability of it is investigated through studying the adsorption properties of clenbuterol. It showed better adsorption capacities of clenbuterol than pure SBA-15. β-CD functionalized SBA-15 material has the potential applications in the treatment of clenbuterol contamination in food and environment science.


2012 ◽  
Vol 616-618 ◽  
pp. 1797-1800
Author(s):  
Yu Mei Gong ◽  
Qing Liang ◽  
Jing Chuan Song ◽  
Ling Ming Xia

This paper presents the preparation of bimodal crystalline macro-/mesoporous titania powders by using a pluronic polymer (EO20PO70EO20, P123) as a template through a hydrothermal treatment. The as-prepared powders were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscope (SEM) and transmission electron microscope (TEM). The results reveal that the amount of P123 has a significant effect on the surface area of the mesoporous titania. When the mass ratio of P123:TBOT is 1:14, the crystalline macro-/mesoporous titania has the largest surface area (120.96 m2/g), the average pore diameter of this sample reaches a minimum of 6.67 nm.


2010 ◽  
Vol 660-661 ◽  
pp. 561-566
Author(s):  
L.A. Lima ◽  
B.V. Sousa ◽  
Meiry Glaúcia Freire Rodrigues

Catalysts supported on SBA-15 were obtained by wet impregnation using aqueous solution of cobalt nitrate, where different contents of cobalt (5 wt% and 10 wt%) were prepared. The molecular sieve SBA-15 was synthesized using tetra ethyl ortho silicate (TEOS) as silicate source, and triblock copolymer, poly-(ethylene oxide)-poly (propylene oxide)-poly-(ethylene oxide) PEO-PPO-PEO as the organic structure directing agent. These materials were characterized by X-ray diffraction (XRD), X-ray energy dispersion spectrophotometer (EDX) and Nitrogen adsorption–desorption isotherms (BET). The results from the XRD showed that the molecular sieve mesoporous (SBA-15) was identified by X-ray diffraction, especially from the (210) and (300) peaks, which represent a typical spectrum for the SBA-15. Characterization of catalysts by Nitrogen adsorption–desorption isotherms (BET) made it possible to verify the the samples had been of type IV with hysteresis of corresponding the H2 type the porous materials.


2013 ◽  
Vol 22 (3) ◽  
pp. 096369351302200
Author(s):  
N. Ivashchenko ◽  
V. Tertykh ◽  
J. Skubiszewska-Zięba ◽  
R. Leboda ◽  
S. Khainakov ◽  
...  

Palladium nanoparticles with controlled size were synthesized within the pores of the mesoporous SBA-15 and SBA-16 silicas with grafted silicon hydride groups. Nitrogen adsorption-desorption method, X-ray diffraction and transmission electron microscopy (TEM) were used for characterization of palladium-containing composites. Results of material study clearly revealed that Pd nanoparticles prepared by this method were located inside the porous channels and were quite uniform in size (mostly 5–6 nm). The influence of metal content on the particles size and porous structure of supports was investigated.


Sign in / Sign up

Export Citation Format

Share Document