scholarly journals Synthesis and Characterization of Nanocrystalline Aluminophosphate AlPO4-5 Molecular Sieve

2018 ◽  
Vol 24 (3) ◽  
pp. 161
Author(s):  
Asir Alnaama

Nanocrystalline aluminophosphate AlPO4-5 molecular sieves were synthesized by hydrothermal method (HTS). Synthesis parameters like time and temperature of crystallization were investigated. Type of template (R) and ratio of R/P2O5 were studied also. Characterization of the synthesized AlPO4-5 were done by powder X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), Fourier transform infrared (FTIR), differential scanning calorimetry-thermogravimetry analysis (DSC-TGA), and N2 adsorption-desorption BET analysis. XRD patterns results showed excellent crystallinity for two types of templates, di-n-propylamine (DPA) and tetrapropyl ammonium hydroxide (TPAOH) for alumminophosphate five (AFI) structure. Nano-level for particle size of 66 nm was revealed by AFM test. Good thermal stability was obtained in DSC-TGA results. Best time and temperature of crystallization of 24h and 190 O C were got. Optimum R/P2O5 for two kind of template was established.  

2011 ◽  
Vol 399-401 ◽  
pp. 444-448 ◽  
Author(s):  
Jun Qian Mu ◽  
Yi Yang ◽  
Zhi Han Peng

In this paper, a novel flame retarded MCA-PA6 (PA6 incorporated with melamine cyanurate) resin was synthesized by in-situ polymerization. The synthetic product was characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Fourier transform infrared spectroscope (FTIR), thermogravimetry analysis (TG), differential scanning calorimetry (DSC) and elemental analysis. The result showed that good dispersability were obtained in MCA-based PA6 prepared successfully. Meanwhile, the maximum mass loss rate appeared at about 450 °C and the residual char increased from 1.2 wt% to 3.2 wt% at 500 °C due to the existence of MCA.This research revealed MCA-PA6 owned a good thermal stability, hence there was potential flame retardance.


2016 ◽  
Vol 859 ◽  
pp. 62-67
Author(s):  
Min Li ◽  
Dong Liu ◽  
Yue Lun Wang ◽  
Ya Dong Zhang ◽  
Ran Yu ◽  
...  

A series of hierarchical pore molecular sieves (HPMSs) with pore size up to 6.0 nm were prepared using triblock copolymer (P123) as mesoporous template agent and characterized by N2 adsorption-desorption. Cobalt-loaded catalysts were prepared by impregnating cobalt nitrate onto HPMSs and characterized by X-ray diffraction and scanning electron microscopy. The result indicates that mesopore size of HPMS increased along with the increment of the amount of P123. The selectivity of the catalysts for Fischer-Tropsch synthesis was evaluated in a fixed-bed reactor, and the results show that the selectivity of C12+ hydrocarbons is increased with the increment of the pore size.


Clay Minerals ◽  
2021 ◽  
Vol 56 (1) ◽  
pp. 28-36
Author(s):  
Shu-Qin Zheng ◽  
Ou Chen ◽  
Si-Cheng Liu ◽  
An Li ◽  
Li-Jun Li ◽  
...  

AbstractNaY zeolite was synthesized from kaolin/dimethyl sulfoxide (DMSO) intercalation composites using an in situ crystallization technique. The effects of the intercalation ratios and the amounts of the kaolin/DMSO intercalation composite on the synthesis of an NaY zeolite molecular sieve were studied. The samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, N2 adsorption–desorption and scanning electron microscopy. In the in situ synthesis system, when the kaolin/DMSO intercalation composite was added, pure NaY zeolite was formed. By increasing the amount of kaolin/DMSO intercalation composite added, the crystallinity of the samples increased, and after reaching the maximum amount of kaolin/DMSO intercalation composite added, the crystallinity decreased with further increases of the amount of kaolin/DMSO intercalation composite added. To higher intercalation ratio, the crystallinity can be greatly improved at the lower addition content. At an intercalation ratio of 84%, the added amount of kaolin/DMSO intercalation composite was 2.5% and the crystallinity of the NaY zeolite molecular sieve reached a maximum value of 45%. At intercalation ratios of 55% and 22%, the amount of kaolin/DMSO intercalation composite added was 15% and the crystallinities of the NaY zeolite molecular sieves were 44% and 47%, respectively. The NaY zeolite has good thermal stability and a particle diameter of ~0.5 μm. The Brunauer–Emmett–Teller (BET) specific surface area and pore volume of the sample were 519 m2 g–1 and 0.355 cm3 g–1, respectively.


2004 ◽  
Vol 848 ◽  
Author(s):  
Liling Guo ◽  
Yadong Dai ◽  
Mingjie Hu ◽  
Hanxing Liu ◽  
Shixi Ouyang

ABSTRACTWith the preparation of organic-inorganic layered perovskite-type compounds (C4H9NH3)2MCl4 (M = Mn, Cu) in solutions, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetry (TG) and differential scanning calorimetry (DSC) have been used to characterize the obtained powders. XRD patterns demonstrate that the two compounds have obvious layered structures and SEM pictures reveal that both (C4H9NH3)2MnCl4 and (C4H9NH3)2CuCl4 take on obvious sheet-like microstructure. TG&DSC curves indicate that (C4H9NH3)2CuCl4 decomposes at much lower temperature than (C4H9NH3)2MnCl4.This is ascribed to weakening interactions between its organic and inorganic components, which is presumably due to the Jahn-Teller distortion of [CuCl6] octahedra.


2019 ◽  
Vol 9 (01) ◽  
pp. 21-26
Author(s):  
Arif Budiman ◽  
Ayu Apriliani ◽  
Tazyinul Qoriah ◽  
Sandra Megantara

Purpose: To develop glibenclamide-nicotinamide cocrystals with the solvent evaporation method and evaluate their solubility and dissolution properties. Methods: Cocrystals of glibenclamide-nicotinamide (1:2) were prepared with the solvent evaporation method. The prediction of interactive cocrystals was observed using in silico method. The solubility and dissolution were performed as evaluation of cocrystals. The cocrystals also were characterized by differential scanning calorimetry (DSC), infrared spectrophotometry, and powder X-ray diffraction (PXRD). Result: The solubility and dissolution profile of glibenclamide-nicotinamide cocrystal (1:2) increased significantly compared to pure glibenclamide as well as its physical mixture. Characterization of cocrystal glibenclamide-nicotinamide (1:2) including infrared Fourier transform, DSC, and PXRD, indicated the formation of a new solid crystal phase differing from glibenclamide and nicotinamide. Conclusion: The confirmation of cocrystal glibenclamide-nicotinamide (1:2) indicated the formation of new solid crystalline phases that differ from pure glibenclamide and its physical mixture


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 261
Author(s):  
Adolfo Bucio ◽  
Rosario Moreno-Tovar ◽  
Lauro Bucio ◽  
Jessica Espinosa-Dávila ◽  
Francisco Anguebes-Franceschi

A study on the physical and mechanical properties of beeswax (BW), candelilla wax (CW), paraffin wax (PW) and blends was carried out with the aim to evaluate their usefulness as coatings for cheeses. Waxes were analyzed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), permeability, viscosity, flexural and tensile tests and scanning electron microscopy. Cheeses were coated with the waxes and stored for 5 weeks at 30 °C. Measured parameters were weight, moisture, occurrence and degree of fractures, and dimensional changes. The crystal phases identified by XRD for the three waxes allowed them to determine the length of alkanes and the nonlinear compounds in crystallizable forms in waxes. FTIR spectra showed absorption bands between 1800 and 800 cm−1 related to carbonyls in BW and CW. In DSC, the onset of melting temperature was 45.5 °C for BW, and >54 °C for CW and PW. Cheeses coated with BW did not show cracks after storage. Cheeses coated with CW and PW showed microcraks, and lost weight, moisture and shrunk. In the flexural and tensile tests, BW was ductile; CW and PW were brittle. BW blends with CW or PW displays a semi ductile behavior. Cheeses coated with BW blends lost less than 5% weight during storage. The best waxes were BW and the blends.


2013 ◽  
Vol 539 ◽  
pp. 19-24 ◽  
Author(s):  
Yong Qi Wei ◽  
Wu Yao

The quantitative characterization of hydration of cement pastes has always been one of focuses of researchers’ attention. Rietveld phase analysis (RPA), a combination of quantitative X-ray diffraction (QXRD) and the Rietveld method, supplies a tool of an enormous potential for that. Although a few of related researches were conducted by RPA, the reported attention was not paid to the neat cement paste with a low w/c ratio. Therefore, this work aimed at the quantitative study on hydration of such a cement paste chiefly by this method, meanwhile, cooperated with the hyphenated technique of thermogravimetry with differential scanning calorimetry (TG-DSC), as a spot check. Results indicated that RPA was a reliable method in quantitatively characterizing hydration of cement pastes, and gave a clear decription of evolution of all main crystal phases in cement pastes; and that the evolution of monosulphate(Afm_12) was also able to be tracked quantitatively. This will help to understand better the hydration mechanism of cement pastes, as well as to investigate quantitatively effects of mineral and chemical admixtures on hydration of composite cementitious systems.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2020 ◽  
Vol 41 (1) ◽  
pp. 74-79
Author(s):  
Sahira Joshi ◽  
Bishnu K.C.

Series of activated carbons (ACs) have been prepared from Sugarcane bagasse powder by ZnCl2 activation at various impregnation ratios of ZnCl2 to Sugarcane bagasse powder of 0.25:1, 0.5:1, 1:1 and 2:1 by weight. Characteristics of the activated carbons (ACs) were determined by iodine number, methylene blue number, surface area, scanning electron microscopy (SEM) and x-ray diffraction. Iodine number (IN) indicated that, microporosity of the AC were increased with increasing impregnation ratio ZnCl2 to Sugarcane bagasse upto 1:1 then started to decrease. However, mesoporosity as well as surface area was increased progressively. The maximum value of iodine number (868 mg/g) was achieved in the AC prepared at impregnation ratio of ZnCl2 to sugarcane bagasse 1:1. SEM micrographs also show the presence of well developed pores on its surface of AC-1. The broad peaks in the XRD patterns indicated that, all the ACs is amorphous materials. From results, it is concluded that ZnCl2 concentration used in impregnation is effective for development of porosity and surface area of the AC prepared from Sugarcane bagasse.


Sign in / Sign up

Export Citation Format

Share Document