Ion microprobe analysis—a review of geological applications

1989 ◽  
Vol 53 (369) ◽  
pp. 3-24 ◽  
Author(s):  
S. J. B. Reed

AbstractIn ion microprobe analysis the specimen is bombarded with a focussed ion beam a few µm in diameter and the secondary ions produced are accelerated into the entrance slit of a mass spectrometer. An outline of the salient features of the instrument is given here, together with an account of the methods used for quantitative elemental and isotopic analysis.The major part of this paper consists of a comprehensive account of the geological applications of ion microprobe analysis. These include elemental analysis, especially for trace elements (down to sub-ppm levels in many cases) and light elements (H-F) which are beyond the scope of the electron microprobe. The other main area of geological interest is isotopic analysis, where the ion microprobe has the advantage over conventional mass spectrometry of being capable of in situ analysis of selected points on polished sections, obviating the need for laborious specimen preparation, and enabling spatially-resolved data to be obtained, with a resolution of a few µm. The ion microprobe has been especially successful in U-Pb zircon dating and the study of isotope anomalies in meteorites. Other significant applications include diffusion and stable isotope studies.

2012 ◽  
Vol 110 (4) ◽  
pp. 935-941
Author(s):  
Jan Junis Rindermann ◽  
Mohammed Henini ◽  
Pavlos G. Lagoudakis
Keyword(s):  
Ion Beam ◽  

2019 ◽  
Vol 202 ◽  
pp. 121-127 ◽  
Author(s):  
J.E. Halpin ◽  
R.W.H. Webster ◽  
H. Gardner ◽  
M.P. Moody ◽  
P.A.J. Bagot ◽  
...  

2020 ◽  
Vol 11 ◽  
pp. 1504-1515
Author(s):  
Matthew R Ball ◽  
Richard J M Taylor ◽  
Joshua F Einsle ◽  
Fouzia Khanom ◽  
Christelle Guillermier ◽  
...  

The helium ion microscope (HIM) is a focussed ion beam instrument with unprecedented spatial resolution for secondary electron imaging but has traditionally lacked microanalytical capabilities. With the addition of the secondary ion mass spectrometry (SIMS) attachment, the capabilities of the instrument have expanded to microanalysis of isotopes from Li up to hundreds of atomic mass units, effectively opening up the analysis of all natural and geological systems. However, the instrument has thus far been underutilised by the geosciences community, due in no small part to a lack of a thorough understanding of the quantitative capabilities of the instrument. Li represents an ideal element for an exploration of the instrument as a tool for geological samples, due to its importance for economic geology and a green economy, and the difficult nature of observing Li with traditional microanalytical techniques. Also Li represents a “best-case” scenario for isotopic measurements. Here we present details of sample preparation, instrument sensitivity, theoretical, and measured detection limits for both elemental and isotopic analysis as well as practicalities for geological sample analyses of Li alongside a discussion of potential geological use cases of the HIM–SIMS instrument.


Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 751 ◽  
Author(s):  
Roddatis ◽  
Lole ◽  
Jooss

The study of changes in the atomic structure of a catalyst under chemical reaction conditions is extremely important for understanding the mechanism of their operation. For in situ environmental transmission electron microscopy (ETEM) studies, this requires preparation of electron transparent ultrathin TEM lamella without surface damage. Here, thin films of Pr1-xCaxMnO3 (PCMO, x = 0.1, 0.33) and La1-xSrxMnO3 (LSMO, x = 0.4) perovskites are used to demonstrate a cross-section specimen preparation method, comprised of two steps. The first step is based on optimized focused ion beam cutting procedures using a photoresist protection layer, finally being removed by plasma-etching. The second step is applicable for materials susceptible to surface amorphization, where in situ recrystallization back to perovskite structure is achieved by using electron beam driven chemistry in gases. This requires reduction of residual water vapor in a TEM column. Depending on the gas environment, long crystalline facets having different atomic terminations and Mn-valence state, can be prepared.


2012 ◽  
Vol 531-532 ◽  
pp. 592-595
Author(s):  
Yi Qing Chen ◽  
Feng Zai Tang ◽  
Liang Chi Zhang

This paper reports the specimen preparation using an advanced dual beam focused ion beam (FIB) technique for bulk polycrystalline diamond (PCD) composites after dynamic friction polishing (DFP). The technique adapted allows for precisely processing diamond materials at the specific polishing track sites of PCD surface, from which large cross-sectional specimens for SEM/EDS/Raman microanalysis could be successfully created. In addition, an in-situ lift-out method was developed to prepare the site-specific HRTEM specimens which were thin enough for imaging the atomic lattice of diamond and for conducting EELS analysis.


1999 ◽  
Vol 5 (S2) ◽  
pp. 890-891
Author(s):  
T. Malis ◽  
P.R. Buseck ◽  
J.P. Bradley ◽  
J. Li ◽  
M. Phaneuf

There is a trend in electron microscopy towards centralization of the more sophisticated EM systems. The rationale is that the techniques associated with such instrumentation are more efficiently practiced and developed by dedicated specialists in a regional or national centre surrounded by an extensive infrastructure. A similar argument can be used for the preparation of TEM specimens, especially as the demand grows for more precise location of the thin area to be examined. A new trio of techniques - tripod polishing, ultramicrotomy, and focused ion beam (FIB) thinning - can locate the thin area to within a micron or less. In the first two, a linear feature first located via light or scanning electron microscopy can be cross-sectioned by controlled material removal via mechanical polishing or diamond knife sectioning, respectively. With FIB, feature location and material removal are carried out in-situ, first imaging with a low intensity beam, then milling trenches on either side of the feature with a high intensity beam that is decreased as the feature is approached.


2012 ◽  
Vol 1424 ◽  
Author(s):  
Ines Jimenez-Palomar ◽  
Asa H. Barber

ABSTRACTIn this paper we examine the mechanical properties of individual lamellae from bone material using novel atomic force microscopy (AFM)-scanning electron microscopy (SEM) techniques. Individual lamellar beams were selected from bone using focussed ion beam (FIB) microscopy and mechanically deformed with the AFM while observing failure modes using SEM. Both the elastic and fracture behavior of the bone lamellae were determined using these techniques.


2007 ◽  
Vol 1020 ◽  
Author(s):  
Debbie J Stokes ◽  
Laurent Roussel ◽  
Oliver Wilhelmi ◽  
Lucille A Giannuzzi ◽  
Dominique HW Hubert

AbstractCombined focused ion beam (FIB) and scanning electron microscopy (SEM) methods are becoming increasingly important for nano-materials applications as we continue to develop ways to exploit the complex interplay between primary ion and electron beams and the substrate, in addition to the various subtle relationships with gaseous intermediaries.We demonstrate some of the recent progress that has been made concerning FIB SEM processing of both conductive and insulating materials for state-of-the-art nanofabrication and prototyping and superior-quality specimen preparation for ultra-high resolution scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) imaging and related in situ nanoanalysis techniques.


Sign in / Sign up

Export Citation Format

Share Document