Digital analysis of X-ray films

1997 ◽  
Vol 61 (406) ◽  
pp. 453-461 ◽  
Author(s):  
David C. Palmer

AbstractHigh-resolution intensity profiles can be generated from X-ray diffraction films using a desk-top scanner and computer image analysis. The resulting intensity profiles have spatial resolutions equal to, or exceeding that of modern powder diffractometers — at a fraction of the cost. This technique provides an economical way of preserving the information stored in libraries of old (and deteriorating) powder diffraction films. The same technique can also be extended to permit quantitative analysis of single-crystal diffraction films.

2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


2013 ◽  
Vol 113 (16) ◽  
pp. 163506 ◽  
Author(s):  
N. N. Faleev ◽  
C. Honsberg ◽  
V. I. Punegov

RSC Advances ◽  
2016 ◽  
Vol 6 (114) ◽  
pp. 112950-112959 ◽  
Author(s):  
ElSayed M. Shalaby ◽  
Adel S. Girgis ◽  
Hanaa Farag ◽  
Ahmed F. Mabied ◽  
Andrew N. Fitch

Two 3-(arylmethylidene)pyrrolidine-2,5-diones, 12a and 12b, were synthesized and characterized by powder X-ray diffraction utilizing a high-resolution synchrotron X-ray powder technique as well as DFT calculations.


RSC Advances ◽  
2017 ◽  
Vol 7 (37) ◽  
pp. 22964-22973 ◽  
Author(s):  
Pei Sheng ◽  
Guofu Wang ◽  
Mei Dong ◽  
Gang Chen ◽  
Huanhuan Yang ◽  
...  

Systematic study of the hydrothermal crystallization process of CrAPO-5 by in situ high resolution X-ray powder diffraction (HRXRD).


Crystals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Stanko Popović

X-ray powder diffraction is an ideal technique for the quantitative analysis of a multiphase sample. The intensities of diffraction lines of a phase in a multiphase sample are proportional to the phase fraction and the quantitative analysis can be obtained if the correction for the absorption of X-rays in the sample is performed. Simple procedures of quantitative X-ray diffraction phase analysis of a multiphase sample are presented. The matrix-flushing method, with the application of reference intensities, yields the relationship between the intensity and phase fraction free from the absorption effect, thus, shunting calibration curves or internal standard procedures. Special attention is paid to the doping methods: (i) simultaneous determination of the fractions of several phases using a single doping and (ii) determination of the fraction of the dominant phase. The conditions to minimize systematic errors are discussed. The problem of overlapping of diffraction lines can be overcome by combining the doping method (i) and the individual profile fitting method, thus performing the quantitative phase analysis without the reference to structural models of particular phases. Recent suggestions in quantitative phase analysis are quoted, e.g., in study of the decomposition of supersaturated solid solutions—intermetallic alloys. Round Robin on Quantitative Phase Analysis, organized by the IUCr Commission on Powder Diffraction, is discussed shortly. The doping methods have been applied in various studies, e.g., phase transitions in titanium dioxide, biomineralization processes, and phases in intermetallic oxide systems and intermetallic alloys.


1988 ◽  
Vol 3 (6) ◽  
pp. 1327-1335 ◽  
Author(s):  
D. E. Cox ◽  
S. C. Moss ◽  
R. L. Meng ◽  
P. H. Hor ◽  
C. W. Chu

High-resolution synchrotron x-ray powder diffraction studies on samples of La2−xMxCuO4 (M = Sr,Ba) prepared by standard ceramic techniques show that macroscopic compositional inhomogeneities may exist that are unlikely to be revealed by conventional x-ray diffraction methods. Rietveld refinement of neutron data collected at 200, 50, and 11 K from one such sample, nominally La1.8Sr0.2CuO4, gave satisfactory fits to a tetragonal structure of K2NiF4 type at all three temperatures. However, careful individual peak fits revealed that part of the sample transforms to orthorhombic between 200 and 50 K. It is suggested that this multiphase character has an important influence on the superconducting properties.


1978 ◽  
Vol 22 ◽  
pp. 181-191 ◽  
Author(s):  
Steven T. Smith ◽  
Robert L. Snyder ◽  
W. E. Brownell

Spray drying is shown to be an effective and rapid method for preparing samples for quantitative analysis by x-ray powder diffraction. Previously intractable problems like the simultaneous analysis of multiple phases in orientation prone systems can be carried out. Using this method, and a computer controlled diffractometer, five and six phase analyses of Devonian shales can be accomplished in approximately forty minutes. A rapid and convenient method for using the absorption diffraction technique for x-ray quantitative analysis is described.


2007 ◽  
Vol 537-538 ◽  
pp. 457-464
Author(s):  
A. Takács-Szabó ◽  
Balázs Verő ◽  
Jenő Sólyom

Results of the X-ray diffraction (done by computer quantitative phase analysis) and metallographic miscroscopy (colour etching and computer image analysis) inspections aimed at determining the residual austenite content of modern TRIP steel sheets produced at Dunaferr.


2001 ◽  
Vol 16 (2) ◽  
pp. 81-85 ◽  
Author(s):  
Barbara Etschmann ◽  
Nobuo Ishizawa

Single-crystal synchrotron X-ray diffraction (XRD) data were collected and refined for congruent lithium niobate crystals 8 and 6 μm in diameter, sizes that are comparable to the size of the powder particles used in powder diffraction. The motivation for using such small crystals is to minimize problems such as extinction, which decrease with crystal size. The R/wR factors were 0.011/0.014 and 0.019/0.018, for the 8 and 6 μm data, respectively, and the goodness of fit factors were 2.3(1) and 1.63(8), which compare favorably with values obtained from previous powder and single-crystal diffraction studies. Results from single-crystal XRD using crystals less than 10 μm in size may rival those obtained from powder diffraction.


Sign in / Sign up

Export Citation Format

Share Document