scholarly journals Anorpiment, As2S3, the triclinic dimorph of orpiment

2011 ◽  
Vol 75 (6) ◽  
pp. 2857-2867 ◽  
Author(s):  
A. R. Kampf ◽  
R. T. Downs ◽  
R. M. Housley ◽  
R. A. Jenkins ◽  
J. Hyršl

AbstractThe new mineral anorpiment, As2S3, the triclinic dimorph of orpiment, has space group PI and cell parameters a = 5.7577(2), b = 8.7169(3), c = 10.2682(7) Å, α = 78.152(7), β = 75.817(7), γ = 89.861(6)°, V = 488.38(4) Å3 and Z = 4. It occurs at the Palomo mine, Castrovirreyna Province. Huancavelica Department, Peru. It is a low-temperature hydrothermal mineral associated with dufrenoysite, muscovite, orpiment, pyrite and realgar. It occurs in drusy crusts of wedge-shaped, transparent, greenish yellow crystals. The streak is yellow. The lustre is resinous on crystal faces, but pearly on cleavage surfaces. The Mohs hardness is about VA. The mineral is sectile with an irregular fracture and one perfect and easy cleavage on ﹛001﹜. The measured and calculated densities are 3.33 and 3.321 g cm–3, respectively. All indices of refraction are greater than 2. The mineral is optically biaxial (—) with 2V = 35—40° and no observed dispersion. The acute bisectrix (X) is approximately perpendicular to the ﹛001﹜ cleavage. Electron microprobe analyses yielded the averages and ranges in wt.%: As 58.21 (57.74–59.03), S 38.72 (38.33–39.00), total 96.94 (96.07–97.75), providing the empirical formula (based on 5 atoms) As1.96S3.04. The strongest powder X-ray diffraction lines are [d (hkl) I] 4.867(002) 97, 4.519 (110,11̄1) 77, 3.702 (1̄1̄1) 46, 3.609 (022,11̄2) 82, 2.880(201,02̄2,1̄2̄1,023) 75, 2.552 (1̄13,1̄31,132) 100, 2.469 (114,130,13̄1) 96. The structure of anorpiment [R1 = 0.021 for 1484 reflections with F0 > 4σ(F)] consists of layers of covalently bonded As and S atoms. Each S atom bonds to two As atoms at As—S—As angles between 100.45 and 104.15°. Each As atom is strongly bonded to three S atoms at S—As—S angles between 91.28 and 103.59°, forming an AsS3 pyramid with As at its apex. The As—S linkages within the layers form rings of six AsS3 pyramids. Interlayer bonding forces are interpreted as van der Waals. The structure of anorpiment is similar to that of orpiment in that it is composed of layers of As2S3 macromolecules, but arranged in a different stacking sequence.

Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2019 ◽  
Vol 83 (4) ◽  
pp. 507-514
Author(s):  
Peter Elliott ◽  
Jakub Plášil ◽  
Václav Petříček ◽  
Jiří Čejka ◽  
Luca Bindi

ABSTRACTBaumoite, Ba0.5[(UO2)3O8Mo2(OH)3](H2O)~3, is a new mineral found near Radium Hill, South Australia, where it occurs in a granite matrix associated with baryte, metatorbernite, phurcalite and kaolinite. Baumoite forms thin crusts of yellow to orange–yellow tabular to prismatic crystals. The mineral is translucent with a vitreous lustre and pale yellow streak. Crystals are brittle, the fracture is uneven and show one excellent cleavage. The Mohs hardness is ~2½. The calculated density is 4.61 g/cm3. Optically, baumoite crystals are biaxial (–), with α = 1.716(4), β = 1.761(4), γ = 1.767(4) (white light); and 2Vcalc= 42.2°. Electron microprobe analyses gave the empirical formula Ba0.87Ca0.03Al0.04U2.97Mo2.02P0.03O22H11.99, based on 22 O atoms per formula unit. The eight strongest lines in the powder X-ray diffraction pattern are [dobsÅ (I) (hkl)]: 9.175(39)(12${\bar 1}$), 7.450(100)(020), 3.554(20)(221), 3.365(31)(004, 202), 3.255(31)(123, 30${\bar 2}$), 3.209(28)(12${\bar 4}$), 3.067(33)(30${\bar 3}$, 222, 32${\bar 2}$) and 2.977(20)(142). Single-crystal X-ray studies (R1= 5.85% for 1892 main reflections) indicate that baumoite is monoclinic, superspace groupX2/m(a0g)0swithX= (0,½,0,½), with unit-cell parameters:a= 9.8337(3),b= 15.0436(5),c= 14.2055(6) Å, β = 108.978(3)°,V= 1987.25(13) Å3andZ= 4. The crystal structure is twinned and incommensurately modulated and is based upon sheets of U6+and Mo6+polyhedra of unique topology. Four independent cationic sites partially occupied by Ba atoms are located between the sheets, together with H2O molecules.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 449 ◽  
Author(s):  
Nikita Chukanov ◽  
Natalia Zubkova ◽  
Sergey Britvin ◽  
Igor Pekov ◽  
Marina Vigasina ◽  
...  

The new mineral nöggerathite-(Ce) was discovered in a sanidinite volcanic ejectum from the Laach Lake (Laacher See) paleovolcano in the Eifel region, Rhineland-Palatinate, Germany. Associated minerals are sanidine, dark mica, magnetite, baddeleyite, nosean, and a chevkinite-group mineral. Nöggerathite-(Ce) has a color that ranges from brown to deep brownish red, with adamantine luster; the streak is brownish red. It occurs in cavities of sanidinite and forms long prismatic crystals measuring up to 0.02 × 0.03 × 1.0 mm, with twins and random intergrowths. Its density calculated using the empirical formula is 5.332 g/cm3. The Vickers hardness number (VHN) is 615 kgf/mm2, which corresponds to a Mohs’ hardness of 5½. The mean refractive index calculated using the Gladstone–Dale equation is 2.267. The Raman spectrum shows the absence of hydrogen-bearing groups. The chemical composition (electron microprobe holotype/cotype in wt %) is as follows: CaO 5.45/5.29, MnO 4.19/4.16, FeO 7.63/6.62, Al2O3 0.27/0.59, Y2O3 0.00/0.90, La2O3 3.17/3.64, Ce2O3 11.48/11.22, Pr2O3 1.04/0.92, Nd2O3 2.18/2.46, ThO2 2.32/1.98, TiO2 17.78/18.69, ZrO2 27.01/27.69, Nb2O5 17.04/15.77, total 99.59/99.82, respectively. The empirical formulae based on 14 O atoms per formula unit (apfu) are: (Ce0.59La0.165Nd0.11Pr0.05)Σ0.915Ca0.82Th0.07Mn0.50Fe0.90Al0.045Zr1.86Ti1.88Nb1.07O14 (holotype), and (Ce0.57La0.19Nd0.12Pr0.05Y0.06)Σ0.99Ca0.79Th0.06Mn0.49Fe0.77Al0.10Zr1.89Ti1.96Nb1.00O14 (cotype). The simplified formula is (Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14. Nöggerathite-(Ce) is orthorhombic, of the space group Cmca. The unit cell parameters are: a = 7.2985(3), b = 14.1454(4), c = 10.1607(4) Å, and V = 1048.99(7) Å3. The crystal structure was solved using single-crystal X-ray diffraction data. Nöggerathite-(Ce) is an analogue of zirconolite-3O, ideally CaZrTi2O7, with Nb dominant over Ti in one of two octahedral sites and REE dominant over Ca in the eight-fold coordinated site. The strongest lines of the powder X-ray diffraction pattern (d, Å (I, %) (hkl)) are: 2.963 (91) (202), 2.903 (100) (042), 2.540 (39) (004), 1.823 (15) (400), 1.796 (51) (244), 1.543 (20) (442), and 1.519 (16) (282), respectively. The type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia (registration number 5123/1).


2020 ◽  
pp. 1-8
Author(s):  
Anatoly V. Kasatkin ◽  
Natalia V. Zubkova ◽  
Igor V. Pekov ◽  
Nikita V. Chukanov ◽  
Radek Škoda ◽  
...  

Abstract The new mineral percleveite-(La) (IMA2019–037), ideally La2Si2O7, was found in polymineralic nodules of the Mochalin Log REE deposit, Chelyabinsk Oblast, South Urals, Russia. It is associated with allanite-(Ce), allanite-(La), bastnäsite-(Ce), bastnäsite-(La), ferriallanite-(Ce), ferriallanite-(La), ferriperbøeite-(Ce), ferriperbøeite-(La), fluorbritholite-(Ce), hydroxylbastnäsite-(Ce), perbøeite-(Ce), perbøeite-(La), törnebohmite-(Ce) and törnebohmite-(La). Percleveite-(La) occurs as isolated anhedral grains commonly up to 0.2 mm × 0.4 mm and very rarely up to 1 mm × 1 mm. The new mineral is transparent with greasy lustre. The mineral is very pale yellow to colourless in thin fragments to light yellow in aggregates. It is brittle, with imperfect {001} cleavage and an uneven fracture. Mohs’ hardness is ca. 6. Dcalc = 5.094 g cm–3. Under the microscope, percleveite-(La) is non-pleochroic, optically uniaxial (+), ω = 1.825(10) and ɛ = 1.835(10). The Raman spectrum is given. Chemical data (wt.%, electron-microprobe) are: La2O3 36.80, Ce2O3 31.22, Pr2O3 1.57, Nd2O3 2.96, SiO2 26.73, total 99.28. The empirical formula based on 7 O apfu is (La1.02Ce0.86Nd0.08Pr0.04)Σ2.00Si2.00O7. Percleveite-(La) is tetragonal, P41; the unit-cell parameters are: a = 6.8482(3), c = 24.8550(13) Å, V = 1165.64(11) Å3 and Z = 8. The strongest reflections in the powder X-ray diffraction pattern [d, Å(I)(hkl)] are: 4.194(18)(113), 3.564(16)(106), 3.349(16)(201,202), 3.157(100)(203,116,008), 3.043(22)(211), 2.934(39)(122), 2.893(29)(213) and 2.864(21)(117). The crystal structure of percleveite-(La) is solved from the single-crystal X-ray diffraction data [R = 0.0617 for 2831 unique reflections with I > 2σ(I)]. The new mineral is named as an analogue of percleveite-(Ce) with La predominance over the rare-earth elements.


2015 ◽  
Vol 79 (2) ◽  
pp. 345-354 ◽  
Author(s):  
Anthony R. Kampf ◽  
Stuart J. Mills ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo A. Molina Donoso

AbstractTapiaite (IMA2014-024), Ca5Al2(AsO4)4(OH)4·12H2O, is a new mineral from the Jote mine, Tierra Amarilla, Copiapó Province, Atacama, Chile. The mineral is a late-stage, low-temperature, secondary mineral occurring with conichalcite, joteite, mansfieldite, pharmacoalumite, pharmacosiderite and scorodite in narrow seams and vughs in the oxidized upper portion of a hydrothermal sulfide vein hosted by volcanoclastic rocks. Crystals occur as colourless blades, flattened on {101} and elongated and striated along [010], up to ∼0.5 mm long, and exhibiting the forms {101}, {101} and {111}. The blades are commonly intergrown in subparallel bundles and less commonly in sprays. The mineral is transparent and has a white streak and vitreous lustre. The Mohs hardness is estimated to be between 2 and 3, the tenacity is brittle, and the fracture is splintery. It has two perfect cleavages on {101} and {101}. The calculated density based on the empirical formula is 2.681 g cm–3. It is optically biaxial (+) with α = 1.579(1), β = 1.588(1), γ = 1.610(1) (white light), 2Vmeas = 66(2)° and 2Vcalc = 66°. The mineral exhibits no dispersion. The optical orientation is X ≈ [101]; Y = b, Z ≈ [101]. The electron-microprobe analyses (average of five) provided: Na2O 0.09, CaO 24.96, CuO 0.73, Al2O3 10.08, Fe2O3 0.19, As2O5 40.98, Sb2O5 0.09, H2 O 23.46 (structure), total 100.58 wt.%. In terms of the structure, the empirical formula (based on 32 O a.p.f.u.) is (Ca4.83Cu0.102+Na0.03)Σ4.96(Al2.14Fe0.033+)Σ2.17[(As3.875+Sb0.015+)Σ3.88O16][(OH)3.76(H2O)0.24]Σ4(H2O)10·2H2O. The mineral is easily soluble in RT dilute HCl. Tapiaite is monoclinic, P21/n, with unit-cell parameters a = 16.016(1), b = 5.7781(3), c = 16.341(1) Å, β = 116.704(8)°, V = 1350.9(2) Å3 and Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [dobs Å(I)(hkl)]: 13.91(100)(101), 7.23(17)(200,002), 5.39(22)(110,011), 4.64(33)(112,211,303), 3.952(42)(113,311,213), 3.290(35)(214,412,114,411), 2.823(39)(303,315) and 2.753(15)(513,115,121,511). The structure of tapiaite (R1 = 5.37% for 1733 Fo > 4σF) contains Al(AsO4)(OH)2 chains of octahedra and tetrahedra that are topologically identical to the chain in the structure of linarite. CaO8 polyhedra condense to the chains, forming columns, which are decorated with additional peripheral AsO4 tetrahedra. The CaO8 polyhedra in adjacent columns link to one another by corner-sharing to form thick layers parallel to {101} and the peripheral AsO4 tetrahedra link to CaO6 octahedra in the interlayer region, resulting in a framework structure.


2020 ◽  
Vol 58 (5) ◽  
pp. 549-562
Author(s):  
Anatoly V. Kasatkin ◽  
Fabrizio Nestola ◽  
Radek Škoda ◽  
Nikita V. Chukanov ◽  
Atali A. Agakhanov ◽  
...  

ABSTRACT Hingganite-(Nd), ideally Nd2□Be2Si2O8(OH)2, is a new gadolinite group, gadolinite supergroup mineral discovered at Zagi Mountain, near Kafoor Dheri, about 4 km S of Warsak and 30 km NW of Peshawar, Khyber Pakhtunkhwa Province, Pakistan. The new mineral forms zones measuring up to 1 × 1 mm2 in loose prismatic crystals up to 0.7 cm long, where it is intergrown with hingganite-(Y). Other associated minerals include aegirine, microcline, fergusonite-(Y), and zircon. Hingganite-(Nd) is dark greenish-brown, transparent, has vitreous luster and a white streak. It is brittle and has a conchoidal fracture. No cleavage or parting are observed. Mohs hardness is 5½–6. Dcalc. = 4.690 g/cm3. Hingganite-(Nd) is non-pleochroic, optically biaxial (+), α = 1.746(5), β = 1.766(5), γ = 1.792(6) (589 nm). 2Vmeas. = 80(7)°; 2Vcalc. = 84°. Dispersion of optical axes was not observed. The average chemical composition of hingganite-(Nd) is as follows (wt.%; electron microprobe, BeO, B2O3, and Lu2O3 content measured by LA-ICP-MS; H2O calculated by stoichiometry): BeO 9.64, CaO 0.45, MnO 0.10, FeO 3.03, B2O3 0.42, Y2O3 8.75, La2O3 1.63, Ce2O3 12.89, Pr2O3 3.09, Nd2O3 16.90, Sm2O3 5.97, Eu2O3 1.08, Gd2O3 5.15, Tb2O3 0.50, Dy2O3 2.50, Ho2O3 0.33, Er2O3 0.84, Tm2O3 0.10, Yb2O3 0.44, Lu2O3 0.04, ThO2 0.13, SiO2 23.55, H2O 2.72, total 100.25. The empirical formula calculated on the basis of 2 Si apfu is (Nd0.513Ce0.401Y0.395Sm0.175Gd0.145Pr0.096Dy0.068La0.051Ca0.041Eu0.031Er0.022Tb0.014Yb0.011Ho0.009Tm0.003Th0.003Lu0.001)Σ1.979(□0.778Fe2+0.215Mn0.007)Σ1.000(Be1.967B0.062)Σ2.029Si2O8.46(OH)1.54. Hingganite-(Nd) is monoclinic, space group P21/c with a = 4.77193(15), b = 7.6422(2), c = 9.9299(2) Å, β = 89.851(2)°, V = 362.123(14) Å3, and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.105 (95) (011), 4.959 (56) (002), 4.773 (100) (100), 3.462 (58) (102), 3.122 , 3.028 (61) (013), 2.864 (87) (121), 2.573 (89) (113). The crystal structure of hingganite-(Nd) was refined from single-crystal X-ray diffraction data to R = 0.034 for 2007 unique reflections with I > 2σ(I). The new mineral is named as an analogue of hingganite-(Y), hingganite-(Yb), and hingganite-(Ce), but with Nd dominant among the rare earth elements.


2009 ◽  
Vol 73 (6) ◽  
pp. 1027-1032 ◽  
Author(s):  
F. Nestola ◽  
A. Guastoni ◽  
L. Bindi ◽  
L. Secco

AbstractDalnegroite, ideally Tl4Pb2(As12Sb8)Σ20S34, is a new mineral from Lengenbach, Binntal, Switzerland. It occurs as anhedral to subhedral grains up to 200 μm across, closely associated with realgar, pyrite, Sb-rich seligmanite in a gangue of dolomite. Dalnegroite is opaque with a submetallic lustre and shows a brownish-red streak. It is brittle; the Vickers hardness (VHN25) is 87 kg mm-2(range: 69—101) (Mohs hardness ∼3—3½). In reflected light, dalnegroite is highly bireflectant and weakly pleochroic, from white to a slightly greenish-grey. In cross-polarized light, it is highly anisotropic with bluish to green rotation tints and red internal reflections.According to chemical and X-ray diffraction data, dalnegroite appears to be isotypic with chabournéite, Tl5-xPb2x(Sb,As)21-xS34. It is triclinic, probable space groupP1, witha= 16.217(7) Å,b= 42.544(9) Å,c= 8.557(4) Å, α = 95.72(4)°, β = 90.25(4)°, γ = 96.78(4)°,V= 5832(4) Å3,Z= 4.The nine strongest powder-diffraction lines [d(Å) (I/I0) (hkl)] are: 3.927 (100) (10 0); 3.775 (45) (22); 3.685 (45) (60); 3.620 (50) (440); 3.124 (50) (2); 2.929 (60) (42); 2.850 (70) (42); 2.579 (45) (02); 2.097 (60) (024). The mean of 11 electron microprobe analyses gave elemental concentrations as follows: Pb 10.09(1) wt.%, Tl 20.36(1), Sb 23.95(1), As 21.33(8), S 26.16(8), totalling 101.95 wt.%, corresponding to Tl4.15Pb2.03(As11.86Sb8.20)S34. The new mineral is named for Alberto Dal Negro, Professor in Mineralogy and Crystallography at the University of Padova since 1976.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2018 ◽  
Vol 82 (5) ◽  
pp. 1049-1055 ◽  
Author(s):  
Daniel Atencio ◽  
Marcelo B. Andrade ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Matteo Zoppi ◽  
...  

ABSTRACTThis study presents a complete characterization of kenoplumbomicrolite, (Pb,□)2Ta2O6[□,(OH),O], occurring in an amazonite pegmatite from Ploskaya Mountain, Western Keivy Massif, Kola Peninsula, Murmanskaja Oblast, Northern Region, Russia.Kenoplumbomicrolite occurs in yellowish brown octahedral, cuboctahedral and massive crystals, up to 20 cm, has a white streak, a greasy lustre and is translucent. The Mohs hardness is ~6. Attempts to measure density (7.310–7.832 g/cm3) were affected by the ubiquitous presence of uraninite inclusions. Reflectance values were measured in air and immersed in oil. Kenoplumbocrolite is optically isotropic. The empirical formula is (Pb1.30□0.30Ca0.29Na0.08U0.03)Σ2.00(Ta0.82Nb0.62Si0.23Sn4+0.15Ti0.07Fe3+0.10Al0.01)Σ2.00O6[□0.52(OH)0.25O0.23]Σ1.00 (from the crystal used for the structural study) and (Pb1.33□0.66Mn0.01)Σ2.00(Ta0.87Nb0.72Sn4+0.18Fe3+0.11W0.08Ti0.04)Σ2.00O6[□0.80(OH)0.10O0.10]Σ1.00 (average including additional fragments). The mineral is cubic, space group Fd$\overline 3 $m. The unit-cell parameters refined from powder X-ray diffraction data are a = 10.575(2) Å and V = 1182.6(8) Å3, which are in accord with those obtained previously from a single crystal of a = 10.571(1) Å, V = 1181.3(2) Å3 and Z = 8. The mineral description and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2015-007a).


2020 ◽  
Vol 58 (4) ◽  
pp. 421-436 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Igor V. Pekov ◽  
Dmitriy I. Belakovskiy ◽  
Svetlana A. Vozchikova ◽  
...  

ABSTRACT The new eudialyte-group mineral sergevanite, ideally Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, was discovered in highly agpaitic foyaite from the Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are microcline, albite, nepheline, arfvedsonite, aegirine, lamprophyllite, fluorapatite, steenstrupine-(Ce), ilmenite, and sphalerite. Sergevanite forms yellow to orange-yellow anhedral grains up to 1.5 mm across and the outer zones of some grains of associated eudialyte. Its luster is vitreous, and the streak is white. No cleavage is observed. The Mohs' hardness is 5. Density measured by equilibration in heavy liquids is 2.90(1) g/cm3. Calculated density is equal to 2.906 g/cm3. Sergevanite is nonpleochroic, optically uniaxial, positive, with ω = 1.604(2) and ε = 1.607(2) (λ = 589 nm). The infrared spectrum is given. The chemical composition of sergevanite is (wt.%; electron microprobe, H2O determined by HCN analysis): Na2O 13.69, K2O 1.40, CaO 7.66, La2O3 0.90, Ce2O3 1.41, Pr2O3 0.33, Nd2O3 0.64, Sm2O3 0.14, MnO 4.15, FeO 1.34, TiO2 1.19, ZrO2 10.67, HfO2 0.29, Nb2O5 1.63, SiO2 49.61, SO3 0.77, Cl 0.23, H2O 4.22, –O=Cl –0.05, total 100.22. The empirical formula (based on 25.5 Si atoms pfu, in accordance with structural data) is H14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67Hf0.04Nb0.38Si25.5S0.30Cl0.20O81.35. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3, with a = 14.2179(1) Å, c = 30.3492(3) Å, V = 5313.11(7) Å3, and Z = 3. In the structure of sergevanite, Ca and Mn are ordered in the six-membered ring of octahedra (at the sites M11 and M12), and Na dominates over Fe2+ at the M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.12 (70) (110), 5.711 (43) (202), 4.321 (72) (205), 3.806 (39) (033), 3.551 (39) (220, 027), 3.398 (39) (313), 2.978 (95) (), 2.855 (100) (404). Sergevanite is named after the Sergevan' River, which is near the discovery locality.


Sign in / Sign up

Export Citation Format

Share Document