Juansilvaite, Na5Al3[AsO3(OH)]4[AsO2(OH)2]2(SO4)2·4H2O, a new arsenate-sulfate from the Torrecillas mine, Iquique Province, Chile

2017 ◽  
Vol 81 (3) ◽  
pp. 619-628 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo A. Molina Donoso

AbstractThe new mineral juansilvaite (IMA2015-080), Na5Al3[AsO3(OH)]4[AsO2(OH)2]2(SO4)2·4H2O, was foOptically, juansilvaiteund at the Torrecillas mine, Iquique Province, Chile, where it occurs as asecondary alteration phase in association with anhydrite, canutite, halite, sulfur and a mahnertite-like phase. Juansilvaite occurs as bright pink blades up to ∼0.5 mm long grouped in tightly intergrown radial aggregates and also as opaque dull pale pink rounded aggregates. Blades areflattened on {001}, elongated on [100] and exhibit the forms {001}, {111} and {201}. Crystals are transparent, with vitreous lustre and white streak. The Mohs hardness is ∼2½, tenacity is brittle and fracture is irregular. Cleavage is very good on {001}. The measured density is3.01(2) g cm–3 and the calculated density is 3.005 g cm–3. Optically, juansilvaite is biaxial (+) with α= 1.575(1), β = 1.597(1), γ= 1.623(1) and 2V = 86(1)° (measured in white light). Dispersion is r < v, slight, andthe orientation is X = b; Z ^ c = 27° in the obtuse angle β. The pleochroism is X > Y ≈ Z in shades of pale pink. The mineral is slowly soluble in dilute HCl at room temperature. The empirical formula, determined from electron-microprobeanalyses, is Na4.95Al2.28Fe0.503+Mn0.213+Cu0.04As5.92S1.83O36H17.37. Juansilvaite is monoclinic, C2/c, a = 18.1775(13), b = 8.6285(5), c= 18.5138(13) Å, β = 90.389(6)°, V = 2903.7(3) Å3 and Z = 4. The eight strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 9.25(100)(002), 7.20(34)(111), 4.545(34)(400), 3.988(39)(114), 3.363(42)(314), 3.145(66)(512,420), 2.960(68)(422,422) and 2,804(33)(131,423). The structure of juansilvaite (R1 = 3.82% for 2040 Fo > 4σF reflections) contains layers made up of alternating corner-linked Al–O octahedra and acid-arsenate tetrahedra. Sodium cations occur both peripheral to the layers and within cavities in the layers. An SO4 tetrahedron and an H2O group also are in the interlayer region.

2016 ◽  
Vol 80 (7) ◽  
pp. 1265-1272 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo Molina A. Donoso

AbstractThe new mineral gajardoite (IMA2015-040), KCa0.5As3+4O6Cl2·5H2O, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with native arsenic, arsenolite,chongite, talmessite and torrecillasite. Gajardoite occurs as hexagonal plates up to ∼100 μm in diameter and 5 μm thick, in rosette-like subparallel intergrowths. Crystals are transparent, with vitreous lustre and white streak. The Mohs hardness is ∼1½, tenacity is brittleand fracture is irregular. Cleavage is perfect on {001}. The measured density is 2.64 g/cm3 and the calculated density is 2.676 g/cm3. Optically, gajardoite is uniaxial (–) with ω = 1.780(3) and ε = 1.570(5) (measured in white light). The mineral is very slowly soluble in H2O and slowly soluble in dilute HCl at room temperature. The empirical formula, determined from electron-microprobe analyses, is (K0.77Ca0.71Na0.05Mg0.05)∑1.58As4O11Cl1.96H9.62.Gajardoite is hexagonal, P6/mmm, a = 5.2558(8), c = 15.9666(18) Å, V = 381.96(13) Å3 and Z = 1. The eight strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 16.00(100)(001), 5.31(48)(003),3.466 (31)(103), 3.013(44)(104), 2.624(51)(006,110,111), 2.353(36)(113), 1.8647(21)(116,205) and 1.4605(17) (119,303,216). The structure, refined to R1 = 3.49% for 169 Fo > 4σF reflections, contains two types of layers. One layer of formulaKAs3+4O6Cl2 consists of two neutral As2O3 sheets, between which are K+ cations and on the outside of which are Cl– anions. This layer is topologically identical to a slice of the lucabindiite structureand similar to a slice of the torrecillasite structure. The second layer consists of an edge-sharing sheet of Ca(H2O)6 trigonal pyramids with isolated H2O groups centred in the hexagonal cavities in the sheet.


2016 ◽  
Vol 80 (7) ◽  
pp. 1255-1263 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo A. Molina Donoso

AbstractThe new mineral chongite (IMA2015–039), Ca3Mg2(AsO4)2(AsO3OH)2.4H2O, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with native arsenic, arsenolite, gajardoite, talmessite and torrecillasite. Chongite occurs as prismatic crystals up to ∼1 mm long grouped in tightly intergrown radial aggregates up to 2 mm in diameter. Crystals are transparent, with vitreous lustre and white streak. The Mohs hardness is∼3½,tenacity is brittle and fracture is conchoidal. Cleavage is good on ﹛100﹜. The measured density is 3.09(2) g/cm3and the calculated density is 3.087 g/cm3. Optically, chongite is biaxial (-) with α = 1.612(1), β= 1.626(1), γ= 1.635(1) and 2V = 76.9(1)° (measured in white light). Dispersion isr < v,distinct. The optical orientation isX= b;Z^a =27° in obtuse angle β. The mineral is slowly soluble in dilute HCl at room temperature. The empirical formula, determined from electron-microprobe analyses, is (Ca2.90Mg1.93Mn0.14)Σ4.97As4O20H10.07. Chongite is monoclinic,die, a =18.5879(6),b =9.3660(3),c =9.9622(7) Å, β = 96.916(7)°,V=1721.75(14) Å3and Z=4. The eight strongest powder X-ray diffraction lines are[dobsÅ(I)(hkl)]: 8.35(29)(110), 4.644(62) (3ˉ11,020,400,2̄02), 4.396(26)(311), 3.372(62)(022,312,5̄11), 3.275(100)(420,22ˉ2,421), 3.113(57)(222), 2.384(30)(711,530,7̄12) and 1.7990(22)(9̄13,334,5̄34). The structure determination(R1= 1.56% for 1849 Fo> 4σFreflections) confirms that chongite is a member of the hureaulite group.


2017 ◽  
Vol 81 (6) ◽  
pp. 1523-1531 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Dini Maurizio ◽  
Arturo A. Molina Donoso

AbstractThe new mineral magnesiocanutite (IMA2016-057), NaMnMg2[AsO4]2[AsO2(OH)2], was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary phase in association with anhydrite, canutite, halite, lavendulan and magnesiokoritnigite. Magnesiocanutite occurs as pale brownish-pink to rose-pink, lozenge-shaped tablets that are often grouped in tightly intergrown aggregates. The crystal forms are {110} and {102}. Crystals are transparent, with vitreous lustre and white to very pale pink streak. The Mohs hardness is 2½, tenacity is brittle, and the fracture is splintery. Crystals exhibit two perfect cleavages: {010} and {101}. The calculated density is 3.957 g/cm3. Optically, magnesiocanutite is biaxial (+), with α = 1.689(2), β = 1.700(2), γ = 1.730(2) (measured in white light); 2Vmeas. = 64.3(4)°; slight dispersion, r <v; orientation Z = b; X ∧ a = 15° in obtuse angle β. The mineral is slowly soluble in dilute HCl at room temperature. Electron-microprobe analyses, provided Na2O 5.44, CaO 0.26, MgO 8.84, MnO 18.45, CoO 1.47, CuO 2.13, As2O5 59.51, H2O(calc) 2.86, total 98.96 wt.%. Magnesiocanutite is monoclinic, C2/c, a = 12.2514(8), b = 12.4980(9), c = 6.8345(5) Å, β = 113.167(8)°, V = 962.10(13) Å3 and Z = 4. The eight strongest powder X-ray diffraction lines are [dobs Å(I )(hkl)]: 6.25(42)(020), 3.566(43)(310,1̄31), 3.262(96)(1̄12), 3.120(59)(002,131,040,221), 2.787(93)(400,022,041,330), 2.718(100) (4̄21,240,112,402), 2.641(42)(1̄32) and 1.5026(43)(multiple). Magnesiocanutite has a protonated alluaudite-type structure (R1 = 2.59% for 789 Fo > 4σF reflections) and is the Mg analogue of canutite. Using the results of both the microprobe analyses and structure refinement, the structurally based empirical formula is Na(Mn0.78Mg0.22)Σ1.00(Mg1.04Mn0.70Cu0.15Co0.11)Σ2.00[AsO4]2[AsO2(OH)2].


2015 ◽  
Vol 79 (2) ◽  
pp. 345-354 ◽  
Author(s):  
Anthony R. Kampf ◽  
Stuart J. Mills ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo A. Molina Donoso

AbstractTapiaite (IMA2014-024), Ca5Al2(AsO4)4(OH)4·12H2O, is a new mineral from the Jote mine, Tierra Amarilla, Copiapó Province, Atacama, Chile. The mineral is a late-stage, low-temperature, secondary mineral occurring with conichalcite, joteite, mansfieldite, pharmacoalumite, pharmacosiderite and scorodite in narrow seams and vughs in the oxidized upper portion of a hydrothermal sulfide vein hosted by volcanoclastic rocks. Crystals occur as colourless blades, flattened on {101} and elongated and striated along [010], up to ∼0.5 mm long, and exhibiting the forms {101}, {101} and {111}. The blades are commonly intergrown in subparallel bundles and less commonly in sprays. The mineral is transparent and has a white streak and vitreous lustre. The Mohs hardness is estimated to be between 2 and 3, the tenacity is brittle, and the fracture is splintery. It has two perfect cleavages on {101} and {101}. The calculated density based on the empirical formula is 2.681 g cm–3. It is optically biaxial (+) with α = 1.579(1), β = 1.588(1), γ = 1.610(1) (white light), 2Vmeas = 66(2)° and 2Vcalc = 66°. The mineral exhibits no dispersion. The optical orientation is X ≈ [101]; Y = b, Z ≈ [101]. The electron-microprobe analyses (average of five) provided: Na2O 0.09, CaO 24.96, CuO 0.73, Al2O3 10.08, Fe2O3 0.19, As2O5 40.98, Sb2O5 0.09, H2 O 23.46 (structure), total 100.58 wt.%. In terms of the structure, the empirical formula (based on 32 O a.p.f.u.) is (Ca4.83Cu0.102+Na0.03)Σ4.96(Al2.14Fe0.033+)Σ2.17[(As3.875+Sb0.015+)Σ3.88O16][(OH)3.76(H2O)0.24]Σ4(H2O)10·2H2O. The mineral is easily soluble in RT dilute HCl. Tapiaite is monoclinic, P21/n, with unit-cell parameters a = 16.016(1), b = 5.7781(3), c = 16.341(1) Å, β = 116.704(8)°, V = 1350.9(2) Å3 and Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [dobs Å(I)(hkl)]: 13.91(100)(101), 7.23(17)(200,002), 5.39(22)(110,011), 4.64(33)(112,211,303), 3.952(42)(113,311,213), 3.290(35)(214,412,114,411), 2.823(39)(303,315) and 2.753(15)(513,115,121,511). The structure of tapiaite (R1 = 5.37% for 1733 Fo > 4σF) contains Al(AsO4)(OH)2 chains of octahedra and tetrahedra that are topologically identical to the chain in the structure of linarite. CaO8 polyhedra condense to the chains, forming columns, which are decorated with additional peripheral AsO4 tetrahedra. The CaO8 polyhedra in adjacent columns link to one another by corner-sharing to form thick layers parallel to {101} and the peripheral AsO4 tetrahedra link to CaO6 octahedra in the interlayer region, resulting in a framework structure.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2020 ◽  
Vol 58 (4) ◽  
pp. 421-436 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Igor V. Pekov ◽  
Dmitriy I. Belakovskiy ◽  
Svetlana A. Vozchikova ◽  
...  

ABSTRACT The new eudialyte-group mineral sergevanite, ideally Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, was discovered in highly agpaitic foyaite from the Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are microcline, albite, nepheline, arfvedsonite, aegirine, lamprophyllite, fluorapatite, steenstrupine-(Ce), ilmenite, and sphalerite. Sergevanite forms yellow to orange-yellow anhedral grains up to 1.5 mm across and the outer zones of some grains of associated eudialyte. Its luster is vitreous, and the streak is white. No cleavage is observed. The Mohs' hardness is 5. Density measured by equilibration in heavy liquids is 2.90(1) g/cm3. Calculated density is equal to 2.906 g/cm3. Sergevanite is nonpleochroic, optically uniaxial, positive, with ω = 1.604(2) and ε = 1.607(2) (λ = 589 nm). The infrared spectrum is given. The chemical composition of sergevanite is (wt.%; electron microprobe, H2O determined by HCN analysis): Na2O 13.69, K2O 1.40, CaO 7.66, La2O3 0.90, Ce2O3 1.41, Pr2O3 0.33, Nd2O3 0.64, Sm2O3 0.14, MnO 4.15, FeO 1.34, TiO2 1.19, ZrO2 10.67, HfO2 0.29, Nb2O5 1.63, SiO2 49.61, SO3 0.77, Cl 0.23, H2O 4.22, –O=Cl –0.05, total 100.22. The empirical formula (based on 25.5 Si atoms pfu, in accordance with structural data) is H14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67Hf0.04Nb0.38Si25.5S0.30Cl0.20O81.35. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3, with a = 14.2179(1) Å, c = 30.3492(3) Å, V = 5313.11(7) Å3, and Z = 3. In the structure of sergevanite, Ca and Mn are ordered in the six-membered ring of octahedra (at the sites M11 and M12), and Na dominates over Fe2+ at the M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.12 (70) (110), 5.711 (43) (202), 4.321 (72) (205), 3.806 (39) (033), 3.551 (39) (220, 027), 3.398 (39) (313), 2.978 (95) (), 2.855 (100) (404). Sergevanite is named after the Sergevan' River, which is near the discovery locality.


2016 ◽  
Vol 80 (6) ◽  
pp. 949-958 ◽  
Author(s):  
A. R. Kampf ◽  
S. J. Mills ◽  
B. P. Nash

AbstractPauladamsite (IMA2015-005), Cu4(SeO3)(SO4)(OH)4·2H2O, is a new mineral from the Santa Rosa mine, Darwin district, Inyo County, California, USA, where it occurs as a secondary oxidation-zone mineral in association with brochantite, chalcanthite, gypsum, ktenasite, mimetite, schulenbergite and smithsonite on limonitic gossan. Pauladamsite forms green, multiply twinned blades up to 0.5 mm long grouped in radial sprays. The streak is pale green. Crystals are transparent and have vitreous to silky lustre. The Mohs hardness is ∼2, the tenacity is brittle, the fracture is irregular and crystals exhibit one perfect cleavage on [001]. The calculated density is 3.535 g/cm3. Electron microprobe analyses provided: CuO 48.96, ZnO 3.56, SeO2 18.82, SO3 13.90, H2O 13.29 (calc.), total 98.53 wt.%. The empirical formula (based on 13 O apfu) is: (Cu3.55Zn0.25)∑3.80Se0.98SO13H8.50. Pauladamsite is triclinic, P1, a = 6.0742(7), b = 8.4147(11), c = 10.7798 (15) Å, α = 103.665(7), β = 95.224(7), γ = 90.004(6)°, V = 533.03(12) Å3 and Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I)(hkl)]: 10.5(46)(011); 3.245(100)(001); 5.81(50)(011); 2.743(49)(112); 3.994(67)(012); 3.431(23)(1̄12,1̄2̄1,1̄20); 2.692(57)(03̄2,1̄22,2̄1̄2); and 2.485(39)(21̄2,1̄3̄2,02̄4). The structure of pauladamsite (R1 = 10.6% for 2086 Fo > 4σF) contains Cu2+O6 octahedra, SO4 tetrahedra and Se4+O3 pyramids. There are four different CuO6 octahedra, each of which exhibits typical Jahn-Teller distortion, with four short equatorial Cu–O bonds and two much longer apical Cu–O bonds. The CuO6 octahedra share edges to form five-octahedra-wide bands extending along [100]. Adjacent bands are connected in the [011̄] direction by bridging SO4 tetrahedra and in the [011] direction by bridging Se4+O3 pyramids, thereby forming a framework.


2014 ◽  
Vol 78 (3) ◽  
pp. 747-755 ◽  
Author(s):  
A. R. Kampf ◽  
B. P. Nash ◽  
M. Dini ◽  
A. A. Molina Donoso

AbstractThe new mineral torrecillasite (IMA2013-112), Na(As,Sb)43+O6Cl, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, cinnabar, gypsum, halite, lavendulan, magnesiokoritnigite, marcasite, quartz, pyrite, scorodite, wendwilsonite and other potentially new As-bearing minerals. Torrecillasite occurs as thin colourless prisms up to 0.4 mm long in jack-straw aggregates, as very thin fibres in puff balls and as massive intergrowths of needles. Prisms are elongated on [100] with diamond-shaped cross-section and irregular terminations. Crystals are transparent, with adamantine lustre and white streak. The Mohs hardness is 2½, tenacity is brittle and fracture is irregular. Cleavage on (001) is likely. The calculated density is 4.056 g cm−3. Optically, torrecillasite is biaxial (−) with α = 1.800(5), β = 1.96(1), γ = 2.03(calc.) (measured in white light). The measured 2V is 62.1(5)°, no dispersion or pleochroism were observed, the optical orientation isX=c,Y=b,Z=a. The mineral is very slowly soluble in H2O, slowly soluble in dilute HCl and rapidly soluble in concentrated HCl. The empirical formula, determined from electron-microprobe analyses, is (Na1.03Mg0.02)∑1.05(As3.39Sb0.62)∑4.01O6.07Cl0.93. Torrecillasite is orthorhombic,Pmcn, a= 5.2580(9),b= 8.0620(13),c= 18.654(3) Å,V= 790.7(2) Å3andZ= 4. The eight strongest X-ray powder diffraction lines are [dobsÅ(I)(hkl)]: 4.298(33)(111), 4.031(78)(014,020), 3.035(100)(024,122), 2.853(39)(115,123), 2.642(84)(124,200), 2.426(34)(125), 1.8963(32)(225) and 1.8026(29)(0·1·10,233). The structure, refined toR1= 4.06% for 814Fo>4σFreflections, contains a neutral, wavy As2O3layer parallel to (001) consisting of As3+O3pyramids that share O atoms to form six-membered rings. Successive layers are flipped relative to one another and successive interlayer regions contain alternately either Na or Cl atoms. Torrecillasite is isostructural with synthetic orthorhombic NaAs4O6Br.


2015 ◽  
Vol 79 (3) ◽  
pp. 583-596 ◽  
Author(s):  
E. V. Sokol ◽  
Y. V. Seryotkin ◽  
S. N. Kokh ◽  
Ye. Vapnik ◽  
E. N. Nigmatulina ◽  
...  

AbstractFlamite (Ca,Na,K)2(Si,P)O4 (P63; a = 43.3726(18), c = 6.8270(4) Å; V = 11122.2(9) Å3), a natural analogue of the P,Na,K-doped high-temperature α-Ca2SiO4 modification, is a new mineral from Ca- and Al-rich paralava, an ultrahigh-temperature combustion metamorphic melt rock. The type locality is situated in the southern Hatrurim Basin, the Negev Desert, Israel. Flamite occurs as regular lamellar intergrowths with partially hydrated larnite, together with rock-forming gehlenite, rankinite and Ti-rich andradite, minor ferrian perovskite, magnesioferrite, hematite, and retrograde ettringite and calcium silicate hydrates. The mineral is greyish to yellowish, transparent with a vitreous lustre, non-fluorescent under ultraviolet light and shows no parting or cleavage; Mohs hardness is 5–5½; calculated density is 3.264 g cm–3. The empirical formula of holotype flamite (mean of 21 analyses) is (Ca1.82Na0.09K0.06(Mg,Fe,Sr,Ba)0.02)Σ1.99(Si0.82P0.18)Σ1.00O4. The strongest lines in the powder X-ray diffraction pattern are [d, Å (Iobs)]: 2.713(100), 2.765(44), 2.759(42), 1.762(32), 2.518(29), 2.402(23), 2.897(19), 1.967(18), 2.220(15), 1.813(15). The strongest bands in the Raman spectrum are 170, 260, 520, 538, 850, 863, 885, 952 and 1003 cm–1.


2018 ◽  
Vol 83 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Italo Campostrini ◽  
Francesco Demartin ◽  
Marco Scavini

AbstractThe new mineral russoite (IMA2015-105), NH4ClAs23+O3(H2O)0.5, was found at the Solfatara di Pozzuoli, Pozzuoli, Napoli, Italy, as a fumarolic phase associated with alacránite, dimorphite, realgar, mascagnite, salammoniac and an amorphous arsenic sulfide. It occurs as hexagonal plates up to ~300 µm in diameter and 15 µm thick, in rosette-like intergrowths. On the basis of powder X-ray diffraction measurements and chemical analysis, the mineral was recognised to be identical to the corresponding synthetic phase NH4ClAs2O3(H2O)0.5. Crystals are transparent and colourless, with vitreous lustre and white streak. Tenacity is brittle and fracture is irregular. Cleavage is perfect on {001}. The measured density is 2.89(1) g/cm3; the calculated density is 2.911 g/cm3. The empirical formula, (based on 4.5 anions per formula unit) is [(NH4)0.94,K0.06]Σ1.00(Cl0.91,Br0.01)Σ0.92As2.02O3(H2O)0.5. Russoite is hexagonal, space group P622, with a = 5.2411(7), c = 12.5948(25) Å, V = 299.62(8) Å3 and Z = 2. The eight strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 12.63(19)(001), 6.32(100)(002), 4.547(75)(100), 4.218(47)(003), 3.094(45)(103), 2.627(46)(110), 2.428(31)(112) and 1.820(28)(115). The structure, was refined to R = 0.0518 for 311 reflections with I > 2σ(I) and shows a different location of the ammonium cation and water molecules with respect to that reported for the synthetic analogue. The mineral belongs to a small group of phylloarsenite minerals (lucabindiite, torrecillasite and gajardoite). It contains electrically neutral As2O3 layers, topologically identical to those found in lucabindiite and gajardoite between which are ammonium cations and outside of which Cl– anions. Water molecules and additional ammonium cations are located in a layer between two levels of chloride anions.


Sign in / Sign up

Export Citation Format

Share Document