Magnesiocanutite, NaMnMg2[AsO4]2[AsO2(OH)2], a new protonated alluaudite-group mineral from the Torrecillas mine, Iquique Province, Chile

2017 ◽  
Vol 81 (6) ◽  
pp. 1523-1531 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Dini Maurizio ◽  
Arturo A. Molina Donoso

AbstractThe new mineral magnesiocanutite (IMA2016-057), NaMnMg2[AsO4]2[AsO2(OH)2], was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary phase in association with anhydrite, canutite, halite, lavendulan and magnesiokoritnigite. Magnesiocanutite occurs as pale brownish-pink to rose-pink, lozenge-shaped tablets that are often grouped in tightly intergrown aggregates. The crystal forms are {110} and {102}. Crystals are transparent, with vitreous lustre and white to very pale pink streak. The Mohs hardness is 2½, tenacity is brittle, and the fracture is splintery. Crystals exhibit two perfect cleavages: {010} and {101}. The calculated density is 3.957 g/cm3. Optically, magnesiocanutite is biaxial (+), with α = 1.689(2), β = 1.700(2), γ = 1.730(2) (measured in white light); 2Vmeas. = 64.3(4)°; slight dispersion, r <v; orientation Z = b; X ∧ a = 15° in obtuse angle β. The mineral is slowly soluble in dilute HCl at room temperature. Electron-microprobe analyses, provided Na2O 5.44, CaO 0.26, MgO 8.84, MnO 18.45, CoO 1.47, CuO 2.13, As2O5 59.51, H2O(calc) 2.86, total 98.96 wt.%. Magnesiocanutite is monoclinic, C2/c, a = 12.2514(8), b = 12.4980(9), c = 6.8345(5) Å, β = 113.167(8)°, V = 962.10(13) Å3 and Z = 4. The eight strongest powder X-ray diffraction lines are [dobs Å(I )(hkl)]: 6.25(42)(020), 3.566(43)(310,1̄31), 3.262(96)(1̄12), 3.120(59)(002,131,040,221), 2.787(93)(400,022,041,330), 2.718(100) (4̄21,240,112,402), 2.641(42)(1̄32) and 1.5026(43)(multiple). Magnesiocanutite has a protonated alluaudite-type structure (R1 = 2.59% for 789 Fo > 4σF reflections) and is the Mg analogue of canutite. Using the results of both the microprobe analyses and structure refinement, the structurally based empirical formula is Na(Mn0.78Mg0.22)Σ1.00(Mg1.04Mn0.70Cu0.15Co0.11)Σ2.00[AsO4]2[AsO2(OH)2].

2017 ◽  
Vol 81 (5) ◽  
pp. 1141-1149 ◽  
Author(s):  
Anthony R. Kampf ◽  
Stuart J. Mills ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo A. Molina Donoso

AbstractThe new mineral currierite (IMA2016-030), Na4Ca3MgAl4(AsO3OH)12·9H2O, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, canutite, chudobaite, halite, lavendulan, magnesiokoritnigite, quartz, scorodite and torrecillasite. Currierite occurs as hexagonal prisms, needles and hair-like fibres up to ∼200 μm long, in sprays. The crystal forms are ﹛100﹜ and ﹛001﹜. Crystals are transparent, with vitreous to silky lustre and white streak. The Mohs hardness is ∼2, tenacity is brittle, but elastic in very thin fibres, and the fracture is irregular. Crystals exhibit at least one good cleavage parallel [001]. The measured density is 3.08(2) g cm -3 and the calculated density is 3.005 g cm -3. Optically, currierite is uniaxial (–) with ω= 1.614(1) and ε= 1.613(1) (measured in white light). The mineral is slowly soluble in dilute HCl at room temperature. The empirical formula, determined from electron-microprobe analyses, is (Na3.95A12.96Ca2.74Mg1.28Fe0.633+Cu0.13K0.08Co0.03Σ11.80 (AS11.685+Sb0.325+Σ12(O56.96Cl0.04)Σ57H30.81. Currierite is hexagonal, P622, with a = 12.2057(9), c = 9.2052(7) Å, V= 1187.7(2) Å3 and Z = 1. The eight strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 10.63(100)(100), 6.12(20)(110), 5.30(15)(200), 4.61(24)(002), 4.002(35)(210), 3.474(29)(202), 3.021(96)(212) and 1.5227(29)(440,334,612). The structure of currierite (R1 = 2.27% for 658 Fo > 4σF reflections) is based upon a heteropolyhedral chain along c in which AlO6 octahedra are triple-linked by sharing corners with AsO3OH tetrahedra. Chains are linked to one another by bonds to 8(4 + 4)-coordinated Na and 8-coordinated Ca forming a three-dimensional framework with large cavities that contain rotationally disordered Mg(H2O)6 octahedra. The chain in the structure of currierite is identical to that in kaatialaite and a geometrical isomer of that in ferrinatrite. The mineral is named in honour of Mr. Rock Henry Currier (1940–2015), American mineral dealer, collector, author and lecturer.


2016 ◽  
Vol 80 (7) ◽  
pp. 1255-1263 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo A. Molina Donoso

AbstractThe new mineral chongite (IMA2015–039), Ca3Mg2(AsO4)2(AsO3OH)2.4H2O, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with native arsenic, arsenolite, gajardoite, talmessite and torrecillasite. Chongite occurs as prismatic crystals up to ∼1 mm long grouped in tightly intergrown radial aggregates up to 2 mm in diameter. Crystals are transparent, with vitreous lustre and white streak. The Mohs hardness is∼3½,tenacity is brittle and fracture is conchoidal. Cleavage is good on ﹛100﹜. The measured density is 3.09(2) g/cm3and the calculated density is 3.087 g/cm3. Optically, chongite is biaxial (-) with α = 1.612(1), β= 1.626(1), γ= 1.635(1) and 2V = 76.9(1)° (measured in white light). Dispersion isr < v,distinct. The optical orientation isX= b;Z^a =27° in obtuse angle β. The mineral is slowly soluble in dilute HCl at room temperature. The empirical formula, determined from electron-microprobe analyses, is (Ca2.90Mg1.93Mn0.14)Σ4.97As4O20H10.07. Chongite is monoclinic,die, a =18.5879(6),b =9.3660(3),c =9.9622(7) Å, β = 96.916(7)°,V=1721.75(14) Å3and Z=4. The eight strongest powder X-ray diffraction lines are[dobsÅ(I)(hkl)]: 8.35(29)(110), 4.644(62) (3ˉ11,020,400,2̄02), 4.396(26)(311), 3.372(62)(022,312,5̄11), 3.275(100)(420,22ˉ2,421), 3.113(57)(222), 2.384(30)(711,530,7̄12) and 1.7990(22)(9̄13,334,5̄34). The structure determination(R1= 1.56% for 1849 Fo> 4σFreflections) confirms that chongite is a member of the hureaulite group.


2018 ◽  
Vol 83 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Anthony R. Kampf ◽  
Jakub Plášil ◽  
Barbara P. Nash ◽  
Joe Marty

AbstractThe new mineral ammoniomathesiusite (NH4)5(UO2)4(SO4)4(VO5)·4H2O, was found in the Burro mine, San Miguel County, Utah, USA, where it occurs as a secondary phase on asphaltum/quartz matrix in association with ammoniozippeite, gypsum, jarosite and natrozippeite. The mineral forms pale yellow to greenish-yellow prisms, up to ~0.3 mm long, with pale-yellow streak and bright yellow–green fluorescence. Crystals are transparent and have vitreous lustre. The mineral is brittle, with Mohs hardness of 2½, stepped fracture and two cleavages: excellent on {110} and good on {001}. The calculated density is 3.672 g/cm3. Ammoniomathesiusite is optically uniaxial (–) with ω = 1.653(2) and ε = 1.609(2) (white light). Pleochroism is: O = green-yellow, E = colourless; O > E. Electron microprobe analyses yielded the empirical formula [(NH4)4.75(UO2)4(SO4)4(VO5)·4(H2.07O). The five strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 10.57(46)(110), 7.10(62)(001), 6.41(100)(101), 3.340(35)(240) and 3.226(44)(141). Ammoniomathesiusite is tetragonal, P4/n with a = 14.9405(9), c = 7.1020(5) Å, V = 1585.3(2) Å3 and Z = 2. The structure of ammoniomathesiusite (R1 = 0.0218 for 3427 I > 2σI) contains heteropolyhedral sheets based on [(UO2)4(SO4)4(VO5)]5– clusters. The structure is identical to that of mathesiusite, with ${\rm NH}_{\rm 4}^{\rm +} $ in place of K+.


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo &gt; 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2020 ◽  
Vol 58 (4) ◽  
pp. 421-436 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Igor V. Pekov ◽  
Dmitriy I. Belakovskiy ◽  
Svetlana A. Vozchikova ◽  
...  

ABSTRACT The new eudialyte-group mineral sergevanite, ideally Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, was discovered in highly agpaitic foyaite from the Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are microcline, albite, nepheline, arfvedsonite, aegirine, lamprophyllite, fluorapatite, steenstrupine-(Ce), ilmenite, and sphalerite. Sergevanite forms yellow to orange-yellow anhedral grains up to 1.5 mm across and the outer zones of some grains of associated eudialyte. Its luster is vitreous, and the streak is white. No cleavage is observed. The Mohs' hardness is 5. Density measured by equilibration in heavy liquids is 2.90(1) g/cm3. Calculated density is equal to 2.906 g/cm3. Sergevanite is nonpleochroic, optically uniaxial, positive, with ω = 1.604(2) and ε = 1.607(2) (λ = 589 nm). The infrared spectrum is given. The chemical composition of sergevanite is (wt.%; electron microprobe, H2O determined by HCN analysis): Na2O 13.69, K2O 1.40, CaO 7.66, La2O3 0.90, Ce2O3 1.41, Pr2O3 0.33, Nd2O3 0.64, Sm2O3 0.14, MnO 4.15, FeO 1.34, TiO2 1.19, ZrO2 10.67, HfO2 0.29, Nb2O5 1.63, SiO2 49.61, SO3 0.77, Cl 0.23, H2O 4.22, –O=Cl –0.05, total 100.22. The empirical formula (based on 25.5 Si atoms pfu, in accordance with structural data) is H14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67Hf0.04Nb0.38Si25.5S0.30Cl0.20O81.35. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3, with a = 14.2179(1) Å, c = 30.3492(3) Å, V = 5313.11(7) Å3, and Z = 3. In the structure of sergevanite, Ca and Mn are ordered in the six-membered ring of octahedra (at the sites M11 and M12), and Na dominates over Fe2+ at the M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.12 (70) (110), 5.711 (43) (202), 4.321 (72) (205), 3.806 (39) (033), 3.551 (39) (220, 027), 3.398 (39) (313), 2.978 (95) (), 2.855 (100) (404). Sergevanite is named after the Sergevan' River, which is near the discovery locality.


2011 ◽  
Vol 75 (5) ◽  
pp. 2677-2686 ◽  
Author(s):  
L. Bindi ◽  
C. Carbone ◽  
R. Cabella ◽  
G. Lucchetti

AbstractBassoite, ideally SrV3O7·4H2O, is a new mineral from the Molinello manganese mine, Val Graveglia. eastern Liguria, northern Apennines, Italy. It occurs as black euhedral to subhedral grains up to 400 urn across, closely associated with rhodonite, quartz and braunite. Bassoite is opaque with a sub-metallic lustre and a black streak. It is brittle and neither fracture nor cleavage was observed; the Vickers micro-hardness (VHN100) is 150 kg/mm (range 142—165; corresponding to a Mohs hardness of 4—41/2). The calculated density is 2.940 g/cm3 (on the basis of the empirical formula and X-ray single-crystal data). Bassoite is weakly bireflectant and very weakly pleochroic from grey to a dark green. Internal reflections are absent. The mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 18.5%, 19.0% (471.1 nm); 17.2%, 17.8% (548.3 nm); 16.8%, 17.5% (586.6 nm) and 16.2%, 16.8% (652.3 nm), respectively.Bassoite is monoclinic, space group P21/m, with unit-cell parameters: a = 5.313(3) Å, b = 10.495(3) Å, c = 8.568(4) Å, β = 91.14(5)°, V= 477.7(4) Å3, a:b:c = 0.506:1:0.816, and Z = 2. The crystal structure was refined to R1 = 0.0209 for 1148 reflections with Fo > 4σ(Fo) and it consists of layers of VO5 pyramids (with vanadium in the tetravalent state) pointing up and down alternately with Sr between the layers (in nine-fold coordination). The nine most intense X-ray powder-diffraction lines [d in Å (I/I0) (hkt)] are: 8.5663 (100) (001); 6.6363 (14) (011); 3.4399 (14) (1̄21); 3.4049 (17) (121); 2.8339 (15) (1̄22); 2.7949 (11) (122); 2.6550 (15) (200); 2.6237 (11) (040) and 1.8666 (15) (240). Electron microprobe analyses produce a chemical formula (Sr0.97Ca0.02Na0.01)V3.00O74H20, on the basis of 2(Sr+Ca+Na) = 1, taking the results of the structure refinement into account. The presence of water molecules was confirmed by micro-Raman spectroscopy. The name honours Riccardo Basso (b. 1947), full professor of Mineralogy and Crystallography at the University of Genova. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA (2011-028).


2014 ◽  
Vol 78 (4) ◽  
pp. 905-917 ◽  
Author(s):  
I. V. Pekov ◽  
N. V. Zubkova ◽  
V. O. Yapaskurt ◽  
D. I. Belakovskiy ◽  
I. S. Lykova ◽  
...  

AbstractA new mineral, yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6, occurs in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with hatertite, bradaczekite, johillerite, hematite, tenorite, tilasite and aphthitalite. Yurmarinite occurs as well-shaped, equant crystals up to 0.3 mm in size, their clusters up to 0.5 mm and thin, interrupted crystal crusts up to 3 mm × 3 mm on volcanic scoria. Crystal forms are {101}, {011}, {100}, {110} and {001}. Yurmarinite is transparent, pale green or pale yellowish green to colourless. The lustre is vitreous and the mineral is brittle. The Mohs hardness is ∼4½. One direction of imperfect cleavage was observed, the fracture is uneven. D(calc.) is 4.00 g cm−3. Yurmarinite is optically uniaxial (−), ω = 1.748(5), ε = 1.720(3). The Raman spectrum is given. The chemical composition (wt.%, electron microprobe data) is Na2O 16.85, K2O 0.97, CaO 1.28, MgO 2.33, MnO 0.05, CuO 3.17, ZnO 0.97, Al2O3 0.99, Fe2O3 16.44, TiO2 0.06, P2O5 0.12, V2O5 0.08, As2O5 56.68, total 99.89. The empirical formula, calculated on the basis of 24 O atoms per formula unit, is (Na6.55Ca0.28K0.22)S7.05(Fe2.483+Mg0.70Cu0.48Al0.23Zn0.14Ti0.01Mn0.01)S4.05(As5.94P0.02V0.01)S5.97O24. Yurmarinite is rhombohedral, Rc, a = 13.7444(2), c = 18.3077(3) Å, V = 2995.13(8) Å3, Z = 6. The strongest reflections in the X-ray powder pattern [d, Å (I)(hkl)] are: 7.28(45)(012); 4.375(33)(211); 3.440(35)(220); 3.217(36)(131,214); 2.999(30)(223); 2.841(100)(125); 2.598(43)(410). The crystal structure was solved from single-crystal X-ray diffraction data to R = 0.0230. The structure is based on a 3D heteropolyhedral framework formed by M4O18 clusters (M = Fe3+ > Mg,Cu) linked with AsO4 tetrahedra. Sodium atoms occupy two octahedrally coordinated sites in the voids of the framework. In terms of structure, yurmarinite is unique among minerals but isotypic with several synthetic compounds with the general formula (Na7–x☐x)(M3+x3+M1–x2+)(T5+O4)2 in which T = As or P, M3+ = Fe or Al, M2+ = Fe and 0 ≤ x ≤ 1. The mineral is named in honour of the Russian mineralogist, petrologist and specialist in studies of ore deposits, Professor Yuriy B. Marin (b. 1939). The paper also contains a description of the Arsenathaya fumarole and an overview of arsenate minerals formed in volcanic exhalations.


2015 ◽  
Vol 79 (3) ◽  
pp. 583-596 ◽  
Author(s):  
E. V. Sokol ◽  
Y. V. Seryotkin ◽  
S. N. Kokh ◽  
Ye. Vapnik ◽  
E. N. Nigmatulina ◽  
...  

AbstractFlamite (Ca,Na,K)2(Si,P)O4 (P63; a = 43.3726(18), c = 6.8270(4) Å; V = 11122.2(9) Å3), a natural analogue of the P,Na,K-doped high-temperature α-Ca2SiO4 modification, is a new mineral from Ca- and Al-rich paralava, an ultrahigh-temperature combustion metamorphic melt rock. The type locality is situated in the southern Hatrurim Basin, the Negev Desert, Israel. Flamite occurs as regular lamellar intergrowths with partially hydrated larnite, together with rock-forming gehlenite, rankinite and Ti-rich andradite, minor ferrian perovskite, magnesioferrite, hematite, and retrograde ettringite and calcium silicate hydrates. The mineral is greyish to yellowish, transparent with a vitreous lustre, non-fluorescent under ultraviolet light and shows no parting or cleavage; Mohs hardness is 5–5½; calculated density is 3.264 g cm–3. The empirical formula of holotype flamite (mean of 21 analyses) is (Ca1.82Na0.09K0.06(Mg,Fe,Sr,Ba)0.02)Σ1.99(Si0.82P0.18)Σ1.00O4. The strongest lines in the powder X-ray diffraction pattern are [d, Å (Iobs)]: 2.713(100), 2.765(44), 2.759(42), 1.762(32), 2.518(29), 2.402(23), 2.897(19), 1.967(18), 2.220(15), 1.813(15). The strongest bands in the Raman spectrum are 170, 260, 520, 538, 850, 863, 885, 952 and 1003 cm–1.


2015 ◽  
Vol 79 (3) ◽  
pp. 661-669 ◽  
Author(s):  
A. R. Kampf ◽  
P. M. Adams ◽  
B. P. Nash ◽  
J. Marty

AbstractFerribushmakinite (IMA2014-055), Pb2Fe3+(PO4)(VO4)(OH), the Fe3+ analogue of bushmakinite, is a new mineral from the Silver Coin mine, Valmy, Iron Point district, Humboldt County, Nevada, USA, where it occurs as a low-temperature secondary mineral in association with plumbogummite, mottramite, Br-rich chlorargyrite and baryte on massive quartz. Ferribushmakinite forms yellow slightly flattened prisms up to 0.2 mm long growing in X and sixling twins. The streak is pale yellow. Crystals are translucent and have adamantine lustre. The Mohs hardness is ∼2, the tenacity is brittle, the fracture is irregular to splintery and crystals exhibit one or two fair cleavages in the [010] zone. The calculated density is 6.154 g/cm3. Electron microprobe analyses provided: PbO 63.69, CaO 0.07, CuO 1.11, Fe2O3 7.63, Al2O3 1.63, V2O5 12.65, As2O5 3.09, P2O58.63, H2O 1.50 (structure), total 100.00 wt.% (normalized). The empirical formula (based on nine O a.p.f.u.) is: (Pb1.99Ca0.01)Σ2.00(Fe0.66Al0.22Cu0.10)Σ0.98(V0.97P0.85As0.19)Σ2.01O7.84(OH)1.16. Ferribushmakinite is monoclinic, P21/m, a = 7.7719(10), b = 5.9060(7), c = 8.7929(12) Å, β = 111.604(8)°, V = 375.24(9) Å3 and Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [dobs in Å (I)(hkl)]: 4.794(46)(011); 3.245(84)(211); 2.947(100)(020,212,103); 2.743(49)(112); 2.288(30)(220); 1.8532(27)(314,403); 1.8084(27)(multiple); and 1.7204(28)(312,114,321). Ferribushmakinite is a member of the brackebuschite supergroup. Its structure (R1 = 3.83% for 577 Fo > 4σF) differs from that of bushmakinite only in the dominance of Fe3+ over Al in the octahedral site.


Sign in / Sign up

Export Citation Format

Share Document