scholarly journals Immunoconjugates and new molecular targets in hairy cell leukemia

Hematology ◽  
2012 ◽  
Vol 2012 (1) ◽  
pp. 660-666 ◽  
Author(s):  
Robert J. Kreitman

Abstract Hairy cell leukemia (HCL) is a B-cell malignancy that in its classic form is exquisitely sensitive to single-agent purine analog therapy, but that is associated in many patients with late relapse and eventual purine analog resistance. Minimal residual disease, which is present in most patients achieving complete remission with purine analogs, retains Ags that are ideal for targeted therapy. Rituximab, which targets CD20, is active as a single agent, particularly if combined with purine analogs. Recombinant immunotoxins targeting either CD25 or CD22 and containing truncated Pseudomonas exotoxin have achieved major responses in relapsed/refractory HCL. Moxetumomab pasudotox in phase 1 testing achieved responses in 86% of such patients (complete in 46%) without dose limiting toxicity and often without MRD. Soluble CD22 has been used for improved detection and monitoring of HCL, particularly the poor-prognosis variant that lacks CD25. Ig rearrangements unique for each HCL patient have been cloned, sequenced, and followed by real-time quantitative PCR using sequence-specific reagents. Analysis of these rearrangements has identified an unmutated IGVH4-34–expressing poor-prognosis variant with immunophenotypic characteristics of either classic or variant HCL. The BRAF V600E mutation, reported in 50% of melanomas, is present in > 85% of HCL cases that are both classic and express rearrangements other than IGVH4-34, making HCL a potential target for specific inhibitors of BRAF V600E. Additional targets are being defined in both classic and variant HCL, which should improve both detection and therapy.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 931-931
Author(s):  
Robert J. Kreitman ◽  
Liqiang Xi ◽  
Winnifred Navarro ◽  
Maryalice Stetler-Stevenson ◽  
Evgeny Arons ◽  
...  

Abstract Abstract 931 Background: Hairy cell leukemia (HCL) is a B-cell malignancy with distinctive immunophenotype. Purine analog therapy achieves durable complete remissions in 65–90% of patients. HCL variant (HCLv), recognized by the World Health Organization (WHO) as a different disease, lacks CD25, annexin A1 and/or TRAP, and responds poorly to purine analogs with only partial responses (PR) in <50% and lower overall survival (OS) from diagnosis. The recently described HCL variant expressing the immunoglobulin rearrangement IGHV4-34 also has poor response to purine analogs and OS, but can resemble HCL or HCLv immunophenotypically. The V600E BRAF mutation was recently reported present in 100% of 48 patients with HCL and absent in 16 with related disorders including at least 1 case of HCLv. We wished to confirm these results and test well-characterized cases of HCLv and IGHV4-34+ HCL. Methods: DNA was prepared from the blood of 70 patients with HCL and HCLv, 64 of whom were molecularly characterized with respect to IGHV gene usage. The mutation analysis of BRAF c.1799T>A (V600E) and other variants among codons 599–601 within exon 15 was performed using a target-specific mutant allele enriching COLD-PCR technique followed by pyrosequencing. The apparent percentage of mutant versus wild-type alleles was calculated with allele quantification (AQ) mode using PyroMark Software. The threshold AQ value for classifying samples as positive as a mutation was calculated as 3 standard deviations above the mean value of 24 normal blood samples. Results: Out of 70 total patients tested, 16 (23%) were diagnosed as HCLv based on WHO criteria, and the other 54 were classic HCL. Thirteen (19%) of the 70 cases expressed IGHV4-34, 5 classic HCL and 8 HCLv immunophenotypically. All 6 cases not characterized for IGHV gene usage were classic HCL. The analytic sensitivity of the pyrosequencing assay using cell line controls containing BRAF mutations was <5% tumor cells, and all cases were required to have ≥10% of total white blood cells as HCL. As shown in the table, 28 (40%) of the cases were wild-type with respect to BRAF, including all cases of HCLv. In addition, all 13 cases of IGHV4-34+ HCL, including 5 with classic immunophenotype, were negative for the V600E mutation. Moreover, 7 classic HCL cases were wild-type at V600 of BRAF, including 1 with unknown IGHV and 6 expressing IGHV2-70, IGHV3-15, IGHV3-23, IGHV3-48, IGHV4-39 and IGHV4-59. These 7 cases were relatively resistant to purine analog therapy although numbers were too few for statistical comparisons. In one of these 7 classic HCL cases, CD25 expression had decreased over time. Conclusions: The V600E BRAF mutation is not present in HCLv or in HCL cases with typical immunophenotype expressing IGHV4-34. A significant minority of other classic HCL cases, 7 (14%) of 49, were negative for the V600E BRAF mutation. It is possible that the V600E BRAF mutation is related to factors other than those affecting immunophenotype, including those influencing prognosis. Additional studies will be needed to better understand the role of V600E-mutated BRAF in HCL and the molecular basis of variants of this disease (Supported in part by NCI, intramural research program, NIH). Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 38 (14) ◽  
pp. 1527-1538 ◽  
Author(s):  
Dai Chihara ◽  
Evgeny Arons ◽  
Maryalice Stetler-Stevenson ◽  
Constance M. Yuan ◽  
Hao-Wei Wang ◽  
...  

PURPOSE Single-agent purine analog, usually cladribine, has been the standard first-line therapy of hairy cell leukemia (HCL) for 30 years. High complete remission (CR) rates often include minimal residual disease (MRD), leading to relapse and repeated treatments. Rituximab can clear MRD, but long-term results are unknown and optimal timing of rituximab undefined. PATIENTS AND METHODS Patients were randomly assigned to first-line cladribine 0.15 mg/kg intravenously days 1-5 with 8 weekly doses of rituximab 375 mg/m2 begun either day 1 (concurrent, CDAR) or ≥ 6 months later (delayed) after detection of MRD in blood. MRD tests included blood and bone marrow (BM) flow cytometry, and BM immunohistochemistry. RESULTS Sixty-eight patients with purine analog-naïve classic HCL were randomly assigned 1:1 to concurrent versus delayed arms. At 6 months after CDAR versus cladribine monotherapy, CR rates were 100% versus 88% ( P = .11), MRD-free CR rates 97% versus 24% ( P < .0001, primary end point), and blood MRD-free rates 100% versus 50% ( P < .0001), respectively. At 96 months median follow-up, 94% versus 12% remained MRD free. Compared with CDAR, delayed rituximab after cladribine achieved lower rate (67% of 21 evaluable patients; P = .0034) and durability ( P = .0081, hazard radio favoring CDAR, 0.094) of MRD-free CR. Nevertheless, 12 patients in the delayed arm remained MRD free when restaged 6-104 (median, 78) months after last delayed rituximab treatment. Compared with cladribine monotherapy, CDAR led to brief grade 3/4 thrombocytopenia (59% v 9%; P < .0001) and platelet transfusions without bleeding (35% v 0%; P = .0002), but higher neutrophil ( P = .017) and platelet ( P = .0015) counts at 4 weeks. CONCLUSION Achieving MRD-free CR of HCL after first-line cladribine is greatly enhanced by concurrent rituximab and less so by delayed rituximab. Longer follow-up will determine if MRD-free survival leads to less need for additional therapy or cure of HCL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1214-1214 ◽  
Author(s):  
Enrico Tiacci ◽  
Luca De Carolis ◽  
Francesco Zaja ◽  
Achille Ambrosetti ◽  
Eugenio Lucia ◽  
...  

Abstract BACKGROUND: Hairy cell leukemia (HCL) responds well to purine analogs, but up to 50% of patients relapse. We previously identified the BRAF-V600E mutation as the genetic lesion underlying HCL (NEJM 364:230-2315, 2011), and successfully targeted this mutation in the clinic with the oral BRAF inhibitor vemurafenib through an academic phase-2 multi-center Italian trial in HCL patients relapsed after or refractory to purine analogs (NEJM 373:1733-1747, 2015). In these heavily pre-treated patients, vemurafenib given for a median of 16 weeks produced 96% of responses, including 9/26 (35%) complete remissions (CR) and 16/26 (61%) partial remissions (PR), which were obtained after a median of 8 weeks of treatment. Even in complete responders, immunohistochemistry showed residual (~10%) bone marrow HCL cells at the end of treatment, and relapses were common, occurring at a median of 19 months and 6 months in CR and PR patients respectively. Residual HCL cells resisting vemurafenib treatment might be targeted by concomitant immunotherapy with an anti-CD20 monoclonal antibody, an attractive strategy to potentially achieve a more profound response and a better clinical outcome through a chemotherapy-free approach. METHODS: We started an academic, phase-2, single-center trial (EudraCT 2014-003046-27) in relapsed/refractory HCL, which tests vemurafenib in combination with rituximab, another targeted non-myelotoxic drug with known single-agent activity in HCL. Eligibility was extended to patients relapsed also after monotherapy with a BRAF inhibitor. Vemurafenib was given at its standard dose (960 mg twice daily orally) for 8 weeks. Rituximab infusions (375 mg/m2intravenously) were given concomitantly with vemurafenib every 2 weeks, as well as sequentially (after the end of vemurafenib dosing) four times every 2 weeks. RESULTS: We have so far enrolled 22 patients in 16 months. Adverse reactions were reversible, usually mild and consistent with the known toxicity profile of the two drugs when used alone. Notably, a CR was achieved by all 14 patients already evaluable for efficacy (100%), including 4 who had relapsed after a BRAF inhibitor and 1 previously refractory to rituximab. Furthermore, 12/14 patients (86%) obtained the CR as early as after 4 weeks of vemurafenib and 2 concomitant rituximab infusions. This CR rate appears higher than that observed by us and others using vemurafenib alone in BRAF inhibitor-naive patients relapsed after or refractory to purine analogs (CR rate 35-42%; NEJM 373:1733-1747, 2015). Moreover, minimal residual disease (MRD) was undetectable in the bone marrow biopsy and aspirate of 8/11 patients evaluated (73%), both by immunophenotyping and by allele-specific PCR (limit of detection: 0.05% BRAF-V600E copies). In 5 of these 8 patients, MRD clearing was reached even before sequential rituximab dosing post-vemurafenib. In the remaining 3/11 patients, MRD was at most 5% in 2 vemurafenib-naive patients, and 10% in 1 patient relapsed after prior BRAF-inhibitor treatment. In contrast, residual bone marrow disease was a constant feature of all 26 patients treated by us with vemurafenib alone for a longer time period (NEJM 373:1733-1747, 2015). CONCLUSIONS: This study - which is the first one combining vemurafenib and rituximab in relapsed/refractory HCL - suggests that this non-myelotoxic regimen produces more numerous, faster and deeper CRs than vemurafenib alone. Enrollment continues. Disclosures Gaidano: Karyopharm: Consultancy, Honoraria; Morphosys: Consultancy, Honoraria; Roche: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Speakers Bureau; Gilead: Consultancy, Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau.


2017 ◽  
Vol 35 (9) ◽  
pp. 1002-1010 ◽  
Author(s):  
Enrico Tiacci ◽  
Valentina Pettirossi ◽  
Gianluca Schiavoni ◽  
Brunangelo Falini

Hairy cell leukemia (HCL) is a chronic mature B-cell neoplasm with unique clinicopathologic features and an initial exquisite sensitivity to chemotherapy with purine analogs; however, the disease relapses, often repeatedly. The enigmatic pathogenesis of HCL was recently clarified by the discovery of its underlying genetic cause, the BRAF-V600E kinase-activating mutation, which is somatically and clonally present in almost all patients through the entire disease spectrum and clinical course. By aberrantly activating the RAF-MEK-ERK signaling pathway, BRAF-V600E shapes key biologic features of HCL, including its specific expression signature, hairy morphology, and antiapoptotic behavior. Accompanying mutations of the KLF2 transcription factor or the CDKN1B/p27 cell cycle inhibitor are recurrent in 16% of patients with HCL and likely cooperate with BRAF-V600E in HCL pathogenesis. Conversely, BRAF-V600E is absent in other B-cell neoplasms, including mimickers of HCL that require different treatments (eg, HCL-variant and splenic marginal zone lymphoma). Thus, testing for BRAF-V600E allows for a genetics-based differential diagnosis between HCL and HCL-like tumors, even noninvasively in routine blood samples. BRAF-V600E also represents a new therapeutic target. Patients’ leukemic cells exposed ex vivo to BRAF inhibitors are spoiled of their HCL identity and then undergo apoptosis. In clinical trials of patients with HCL who have experienced multiple relapses after purine analogs or who are refractory to purine analogs, a short course of the oral BRAF inhibitor vemurafenib produced an almost 100% response rate, including complete remission rates of 35% to 42%, without myelotoxicity. To further improve on these results, it will be important to clarify the mechanisms of incomplete leukemic cell eradication by vemurafenib and to explore chemotherapy-free combinations of a BRAF inhibitor with other targeted agents (eg, a MEK inhibitor and/or an anti-CD20 monoclonal antibody).


Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3330-3332 ◽  
Author(s):  
Liqiang Xi ◽  
Evgeny Arons ◽  
Winnifred Navarro ◽  
Katherine R. Calvo ◽  
Maryalice Stetler-Stevenson ◽  
...  

Abstract Recently, the BRAF V600E mutation was reported in all cases of hairy cell leukemia (HCL) but not in other peripheral B-cell neoplasms. We wished to confirm these results and assess BRAF status in well-characterized cases of HCL associated with poor prognosis, including the immunophenotypically defined HCL variant (HCLv) and HCL expressing the IGHV4-34 immunoglobulin rearrangement. Fifty-three classic HCL (HCLc) and 16 HCLv cases were analyzed for BRAF, including 5 HCLc and 8 HCLv expressing IGHV4-34. BRAF was mutated in 42 (79%) HCLc, but wild-type in 11 (21%) HCLc and 16 (100%) HCLv. All 13 IGHV4-34+ HCLs were wild-type. IGHV gene usage in the 11 HCLc BRAF wild-type cases included 5 IGHV4-34, 5 other, and 1 unknown. Our results suggest that HCLv and IGHV4-34+ HCLs have a different pathogenesis than HCLc and that a significant minority of other HCLc are also wild-type for BRAF V600.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1063-1063
Author(s):  
Evgeny Arons ◽  
Tara Suntum ◽  
Joel Sunshine ◽  
Anna Orthwein ◽  
Inger Margulies ◽  
...  

Abstract 10–20% of patients with hairy cell leukemia (HCL) have a variant (HCLv) and present with high tumor burden in spleen and peripheral blood, and are less responsive to purine analogs. HCLv cells lack CD25 and sometimes CD103. Differentiating HCLv from classic HCL (HCLc) is sometimes difficult and it is unclear whether HCLv and HCLc are different disorders. Detailed molecular distinctions between HCLv and HCLc have not been reported. Patients with HCL were studied by flow cytometry and PCR to sequence the monoclonal immunoglobulin heavy chain rearrangements. 50 and 21 VH-D-JH rearrangements were obtained from 49 HCLc and 19 HCLv patients, respectively. All rearrangements except 2 each for HCLc and HCLv were productive. The incidence of VH4 usage was higher in HCLv than in HCLc (57% vs 20%, p=0.0041). VH4-34 was the most common VH gene in HCLv and was more common in HCLv than in HCLc (33% vs 8%, p=0.012). The percentage of rearrangements which were unmutated (defined as &lt; 2% somatic mutations) was higher in HCLv than in HCLc (43% vs 18%, p=0.038), but % homology was similar in both groups by rank order (94.9 vs 94.3% p=0.22). However, in comparing 11 VH4-34 with 60 other rearrangements, homology was higher with VH4-34 (median 99.2 vs 95.2%, p &lt; 0.0001). In fact, the higher frequency of unmutated rearrangements in HCLv vs HCLc was due to VH4-34 cases, since the 7 HCLv VH4-34 rearrangements were all unmated and had higher homology than the other 14 HCLv rearrangements (median 99.6 vs 94.2%, p=0.006). Moreover, unmutated rearrangement incidence was similar between HCLv and HCLc for non-VH4-34 cases (14 vs 13%, p=1.0, median homology 94.2% vs 95.3%, p=0.5). Of the 4 VH4-34+ HCLc (CD25+) patients, 3 (75%) had unmutated rearrangements, and these 3 all had clinical features of HCLv, including presenting with lymphocytosis, large splenomegaly, absent cytopenias, and primary failure of purine analog treatment. Our data shown that homology of monoclonal immunoglobulin rearrangement to the germline sequence of HCL patients appears more related to VH4-34 status than to whether patients have HCLv or HCLc. In fact, no molecular distinctions between HCLv and HCLc were observed in VH4-34-negative patients. Our data suggest VH4-34-positive HCL is itself a variant of HCL affecting ~15% of our patients. Such patients have features of HCLv, but their HCL cells can be CD25+.


Blood ◽  
2009 ◽  
Vol 114 (21) ◽  
pp. 4687-4695 ◽  
Author(s):  
Evgeny Arons ◽  
Tara Suntum ◽  
Maryalice Stetler-Stevenson ◽  
Robert J. Kreitman

Abstract Hairy cell leukemia variant (HCLv) presents with high disease burden, lack of typical antigens like CD25, and poor response to standard treatments like cladribine. Occasionally, patients with classic HCL respond poorly. Clinical and molecular features of HCL and HCLv has not been compared. Rearrangements expressing immunoglobulin VH chain were sequenced, including 22 from 20 patients with HCLv and 63 from 62 patients with classic HCL. Most patients were seeking relapsed/refractory trials, representing a poor-prognosis population. VH4-34, a gene commonly used in autoimmune disorders, was observed in 8 (40%) HCLv and 6 (10%) classic (P = .004) HCL patients. Compared with 71 VH4-34− rearrangements, 14 VH4-34+ rearrangements were more frequently (P < .001) unmutated, defined as greater than 98% homologous to germline sequence. VH4-34+ patients had greater white blood cell counts at diagnosis (P = .002), lower response rate (P < .001) and progression-free survival (P = .007) after initial cladribine, and shorter overall survival from diagnosis (P < .001). Response and survival were more closely related to VH4-34 status than to whether or not patients had HCLv. VH4-34+ HCL is an important disorder that only partly overlaps with the previously described HCLv. Response to initial single-agent cladribine therapy is suboptimal; these patients should be considered for alternative approaches, including antibody-related therapy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2896-2896 ◽  
Author(s):  
Robert J. Kreitman ◽  
Evgeny Arons ◽  
Sapolsky Jeffrey ◽  
Laura Roth ◽  
Hong Zhou ◽  
...  

Abstract Abstract 2896 Background: Moxetumomab pasudotox is an anti-CD22 recombinant immunotoxin containing truncated Pseudomonas exotoxin which was recently reported to achieve a complete remission rate of 46% in 28 patients with relapsed/refractory hairy cell leukemia (HCL). An additional 20 patients were treated at the highest dose level and are now fully evaluable for response and minimal residual disease (MRD) determinations. RQ-PCR using clone-specific primers and a clone-specific TaqMan probe is capable of detecting one HCL cell in 106normal cells. Recently reported methods to detect the HCL-associated BRAF V600E mutation include pyrosequencing (5–10% sensitivity) and PCR (0.1–0.23% sensitivity). Methods: Moxetumomab pasudotox was administered to 16 patients at 5–40 ug/Kg every other day for 3 doses (QODx3) and to 32 patients at 50 ug/Kg QODx3, via 1–16 (median 4) cycles per patient at 4-week intervals. Complete remission (CR) required resolution of cytopenias and elimination of HCL in the blood and marrow by standard microscopy, but MRD could be present by flow cytometry of blood or bone marrow aspirate (BMA) or immunohistochemistry (IHC) of the bone marrow biopsy (BMBx). Blood and marrow from patients were also tested by PCR using consensus primers. When immunoglobulin (Ig) rearrangements could be cloned, RQ-PCR using clone-specific primer and probe was performed. To detect MRD by the BRAF V600E mutation, BRAF quantitative PCR (BRAF-qPCR) was performed on cDNA samples, using mutant-specific primer, and SYBR-Green detection followed by melting point analysis. MRD testing for BRAF-qPCR, unlike clone-specific RQ-PCR, did not require prior cloning of the Ig rearrangement. Results: All 198 cycles of moxetumomab administered to 48 patients were evaluable for toxicity and response. No dose limiting toxicity was observed, although 2 patients as previously reported had a grade 2 hemolytic uremic syndrome with transient grade 1 platelet and creatinine abnormalities. Of the 48 HCL patients at all dose levels, there were 26 (54%) CRs, with an overall response rate (ORR) of 88%. Of 32 at 50 ug/Kg QODx3, there were 19 (59%) CRs with an ORR of 91%. Of these 19 CRs, 11 (58%) achieved MRD negativity by repeated flow cytometry of both BMA and blood and IHC of BMBx. Flow cytometry of the BMA was the most sensitive conventional test of MRD. Of the 9 CRs at 50 ug/Kg QODx3 evaluable by clone-specific RQ-PCR of blood, 5 negative were also flow-negative, and 4 positive were also flow-positive (p=0.008). BRAF-qPCR on cDNA from limiting dilutions of BRAF V600E+ Colo-205 cells into BRAF wild-type cells achieved consistent detection at 1:105dilution (0.001%). Of 10 flow-negative CRs at 50 ug/Kg QODx3 evaluated by BRAF-qPCR, all 10 (100%) were BRAF-qPCR negative, including 4 which were nonevaluable by RQ-PCR due to inability to clone the Ig rearrangements prior to treatment. Currently 12 (63%) of the 19 CRs at 50 ug/Kg QODx3 are ongoing at 6–47 (median 21) months, including 10 (91%) of 11 MRD-negative vs 2 (25%) of 8 MRD+ CRs (p=0.006). Conclusions: Moxetumomab pasudotox is active in relapsed and refractory HCL and has a safety profile supporting further development for this disease. Retreatment on this trial could not necessarily be extended to achieve MRD-negative BMAs or molecular remission by RQ-PCR using sequence-specific or BRAF primers. However, these tests might be useful in the future to guide retreatment, optimize CR durability and possibly eradicate the HCL clone in selected patients. This summary contains investigator reported data. This study was sponsored by MedImmune, LLC, and supported by NCI's Intramural Research Program and the Hairy Cell Leukemia Research Foundation. Disclosures: Kreitman: NIH: Co-inventor on the NIH patent for Moxetumomab Pasudotox, Co-inventor on the NIH patent for Moxetumomab Pasudotox Patents & Royalties. Off Label Use: Moxetumomab Pasudotox is an experimental agent for CD22+ hematologic malignancies. FitzGerald:NIH: Coinventor on the NIH patent for Moxetumomab Pasudotox, Coinventor on the NIH patent for Moxetumomab Pasudotox Patents & Royalties. Fei:AstraZeneca: Stock, Stock Other; MedImmune, LLC: Employment. Ibrahim:AstraZeneca: Stocks, Stocks Other; MedImmune: Employment. Pastan:NIH: Coinventor on NIH patent for moxetumomab pasudotox, Coinventor on NIH patent for moxetumomab pasudotox Patents & Royalties.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5112-5112
Author(s):  
Evgeny Arons ◽  
Hong Zhou ◽  
Yonghong Wang ◽  
Daniel Edelman ◽  
Robert J. Kreitman ◽  
...  

Abstract Classic hairy cell leukemia (HCL), comprising 2% of leukemias, is an indolent B-cell malignancy with malignant lymphocytes expressing B-cell antigens CD20 and CD22, CD103, CD11c, CD25, Annexin A1, BRAF V600E mutation, and monoclonal immunoglobulin (Ig) rearrangement. HCL variant (HCLv), which is ~10% as common as HCL, has much poorer response to therapy and more aggressive course, lacks CD25 and Annexin A1, and is wild-type for BRAF. HCLv is considered separate from HCL by the World Health Organization in the unclassifiable splenic B-cell leukemia/lymphomas. Another poor-prognosis group overlaps HCL and HCLv in which unmutated IGHV4-34 Ig rearrangement is expressed. IGHV4-34+ leukemic cells can resemble classic HCL with CD25 and Annexin A1 expression, but are BRAF wild-type. No uniform mutation has been identified for HCLv and IGHV4-34+ HCL, although MAP2K1 (MEK1) mutations have recently been identified in half of cases. Thus HCLv and IGHV4-34+ HCL are less indolent leukemias with few therapy options and no known molecular target. To study HCLv and IGHV4-34+ HCL, leukemic samples were purified by negative B-cell isolation followed by positive CD11c sorting. Following extraction (Qiagene, AllPrep DNA/RNA Kit), RNA samples from patients were analyzed in microarray studies (Human HT-12 v4 BeadChips, Illumina, Inc.). Expression data were compared by unpaired nonparametric analysis using Mann-Whitney. MYC expression using one probe (log2 values, mean +/- standard deviation) was 7.30 +/- 1.51 for 37 HCL vs 9.77 +/- 1.15 for 32 HCLv or IGHV4-34+ HCL (2-sided p<0.0001). For the other probe, expression was 7.07 +/- 1.51 vs 9.44 +/- 1.17 (p<0.0001). Expression data for MYC had previously been submitted for 31 chronic lymphocytic leukemia (CLL) and 16 HCL samples (Dataset GSE2350, Basso et al, Nat Genet, 37:382, 2005). By 1 probe for MYC, expression was 8.07 +/- 0.55 for CLL vs 9.31 +/- 1.19 for HCL (p=0.0023). By another MYC probe, expression was 9.28 +/- 0.47 for CLL vs 10.22 +/- 0.98 for HCL (p=0.0032). To investigate potential therapeutic relevance of aberrant MYC expression in HCL, HCLv and IGHV4-34+ HCL, the bromodomain and extra terminal (BET) protein inhibitor JQ1, which has been associated with down-regulation of c-Myc via Brd4, was incubated with primary leukemic cells and ATP incorporation was measured. JQ1 inhibited 12 samples of HCL (IC50s 214 +/- 217 nM) more potently than 14 samples of CLL (IC50s 1.77uM +/-2.62 uM, p=0.020), and also inhibited 14 samples of HCLv or IGHV4-34+ HCL (IC50s 221 +/- 234 nM) more potently than the 14 CLL samples (p=0.0079). However, JQ1 inhibition was similar comparing HCL and HCLv or IGHV4-34+ HCL (p=0.89). To exclude non-specific inhibition of the cells, the inactive control molecule JQ1R was tested and was only 6.0% +/- 4.0% as active as JQ1 toward HCL or HCLv or IGHV4-34+ HCL samples. Normal peripheral blood mononuclear cells were resistant (IC50 > 20 uM). In conclusion, our results show that MYC expression is higher in HCLv and IGHV4-34+ HCL than in classic HCL and higher in classic HCL than CLL. Moreover, JQ1 inhibits HCL or its variants more potently than CLL, although the inhibition assay used does not detect a difference between the variants and classic HCL. Further experiments with other inhibitors will be needed to determine if the increased expression of MYC in HCL and its poor-prognosis variants can be exploited for treatment. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Matthew J Cross ◽  
Paras Shah ◽  
Kara Heelan ◽  
Claire E. Dearden ◽  
Dima El-Sharkawi ◽  
...  

BACKGROUND: Hairy cell leukemia (HCL) is a rare indolent B-cell lymphoproliferative disorder. The BRAF V600E mutation was shown to be the underlying genetic driver for the vast majority of classical HCL (HCLc) cases and treatment with the BRAF inhibitor (BRAFi), vemurafenib, has proven extremely successful. Dabrafenib is an oral BRAFi used in melanoma, often in conjunction with trametinib, a MEK inhibitor. Data exists on the use of dabrafenib combined with trametinib in HCLc but there is no efficacy or safety data on either single agent dabrafenib or dabrafenib combined with rituximab. We present a small series of 7 patients treated with either single agent dabrafenib or combination dabrafenib and rituximab. METHODS: Since 2018 dabrafenib was accessible via a Novartis managed access programme for BRAF V600E mutated HCLc patients who had no alternative treatment options. Six patients received dabrafenib, 2 as single agent due to recent prior ineffective rituximab therapy or severe rituximab infusion reaction and the remaining 4 patients with dabrafenib and rituximab. Dabrafenib was given at 150mg twice daily on a continuous 28 day cycle. Rituximab 375mg/m2 IV was given once every 2 weeks for a total of 8 doses. As there was no availability for re-treatment on cessation of therapy and no other suitable/accessible treatment options, patients with ongoing response and good tolerance were continued on indefinite therapy. One additional patient was treated with frontline dabrafenib and rituximab due to various comorbidities including end stage renal failure limiting other treatment options. RESULTS: Mean age on commencing dabrafenib was 73 (52-87) and in the relapsed patients the median number of prior lines of therapy was 5 (3-13). Four patients had undergone prior splenectomy. Two patients had received prior BRAFi therapy with vemurafenib and 3 had received prior Moxetumomab. Patients received a median of 8 cycles of dabrafenib. 4 patients received all 8 cycles of rituximab with 1 discontinuing rituximab due to adverse drug reaction. Adverse drug reactions to dabrafenib were mostly grade 1-2. The most common reaction was benign keratotic skin lesions occurring in 5/7 patients. Their onset was typically after 4 weeks of treatment, persisting whilst therapy continued. Other notable adverse drug reactions were hair thinning and palmar-plantar erythrodysesthesia both occurring in 3/7 patients. Hair thinning did seem to improve with decreasing the dosage and resolve on cessation of the drug. Palmar-plantar erythrodysesthesia was managed with dose reduction and non-steroidal anti-inflammatory drugs. Response assessment criteria used were from the 2017 hairy cell leukemia foundation consensus guidelines for the diagnosis and management of patients with HCLc. All patients responded to therapy. Hematological response was rapid, most patients achieving hematological CR after 2-3 cycles. Five patients achieved a CR, 2 were MRD+ve, 2 were MRD-ve and 1 was a radiological CR. The remaining 2 patients achieved a hematological response, 1 partial and 1 complete. Six patients had sufficient follow up for assessment with 2/6 having relapsed and 4/6 remaining in remission. Median follow up was 17 months, median DOR and median OS were not reached. The 2 patients in our cohort (patients 1 and 3) receiving prior vemurafenib each received 6 cycles, 1 achieving CR lasting 3 months, the other achieving PR lasting 11 months. Both responded rapidly to dabrafenib, one treated with dabrafenib and rituximab achieved an MRD+ve CR with DOR 21 months. The other received single agent dabrafenib and achieved a hematological response with DOR 15.2 months. Treatment response and survival are shown in table 1 and figure 1. Figures 2-7 show the hematological response at time points within the first year of therapy. DISCUSSION: In this small cohort we have shown that dabrafenib as a single agent or combined with rituximab is a safe and effective therapy in BRAF V600E mutated HCLc, even in those patients with prior time limited duration BRAFi therapy. There was no hematological toxicity noted. The main adverse drug effect was development of skin lesions however none were malignant. The only malignant lesion noted pre dated the commencement of dabrafenib. Dermatological surveillance is therefore recommended. Hematological response was rapid with significant improvement seen as early as 4 weeks from commencing therapy. Disclosures El-Sharkawi: Janssen:Honoraria, Membership on an entity's Board of Directors or advisory committees;Roche:Other: Conference fees. OffLabel Disclosure: Use of BRAF inhibitor Dabrafenib in BRAF V600E mutation positive classical Hairy Cell Leukemia.


Sign in / Sign up

Export Citation Format

Share Document