All-trans-retinoic acid induces CD52 expression in acute promyelocytic leukemia

Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1977-1980 ◽  
Author(s):  
Shi-Wu Li ◽  
Dongqi Tang ◽  
Kim P. Ahrens ◽  
Jin-Xiong She ◽  
Raul C. Braylan ◽  
...  

It is well known that all-trans-retinoic acid (ATRA) can induce myeloid cell differentiation in acute promyelocytic leukemia (APL) cells. In this study, we found that ATRA treatment of the APL cell line NB4 induced the expression of CD52, both at transcriptional and translational levels. CD52 is a 21- to 28-kDa nonmodulating cell surface glycosylphosphatidylinositol-linked glycoprotein expressed on lymphocytes and monocytes, but not in human myeloid cells. The ATRA-dependent induction of CD52 expression was not observed in non-promyelocytic leukemia cell lines such as K562, U937, and HL-60, suggesting that induction of CD52 by ATRA may be specific to leukemic cells that express promyelocytic leukemia–retinoic acid receptor α (PML-RARα) or are at the promyelocytic stage of myeloid development. Antibodies against CD52 are used therapeutically against lymphocytes in certain leukemias and in patients undergoing transplantation. An ATRA-induced high level of CD52 expression might potentially serve as a novel therapeutic target in treatment of APL.

Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 1001-1012 ◽  
Author(s):  
Maurizio Gianni ◽  
Mineko Terao ◽  
Ida Fortino ◽  
Marco LiCalzi ◽  
Vincenzo Viggiano ◽  
...  

Abstract Treatment of freshly isolated acute promyelocytic leukemia (APL) cells and the myelogenous leukemia cell lines, NB4, HL-60, and U937, with all-trans retinoic acid (ATRA) results in a remarkable elevation in the amounts of Stat1α and Stat2 proteins. Stat1α protein levels are augmented by ATRA as a consequence of elevated amounts of the corresponding transcripts. The retinoid increases the levels of nuclear complexes that are capable of binding to interferon (IFN)-regulated consensus sequences and contain Stat1 and/or Stat2 proteins, and causes a rapid and long-lasting elevation in Stat1α tyrosine phosphorylation. Transient transfection experiments show that ATRA enhances the transactivating properties of Stat1α observed on an appropriate reporter gene, in the presence of the RARα retinoic acid receptor, but not in the presence of the PML-RAR protein. Treatment of NB4 cells with ATRA is associated with a remarkable upregulation of the two IFN-responsive genes IFN-responsive factor 1 and 2′-5′ oligoadenylate synthetase, as well as with an augmentation in the levels of IFNα secretion. Our data show that ATRA is capable of modulating the amounts and the state of activation of some of the components of the IFN intracellular signaling pathways. They also suggest that the retinoid can bypass IFN/IFN-receptor interactions and induce the expression of IFN-regulated genes.


2021 ◽  
pp. 107815522110078
Author(s):  
Hacer Berna Afacan Ozturk ◽  
Murat Albayrak ◽  
Senem Maral ◽  
Merih Reis Aras ◽  
Fatma Yilmaz ◽  
...  

Introduction All-trans retinoic acid (ATRA) is a physiological metabolite of vitamin A and it is used for the treatment of acute promyelocytic leukemia (APL). Hypercalcemia is a rare side effect of ATRA and it may be potentiated after interaction of ATRA with azole group antifungals. Herein, we have reported an APL case with hypercalcemia that is caused by the interaction of ATRA and posaconazole. Case Report A 49-year-old female patient was diagnosed as APL after the examinations performed upon the detection of pancytopenia when she had presented with the complaints of widespread bruising and fever. After the initiation of posaconazole and ATRA, her serum calcium levels begin to increase (10.3 to 11.1mg/dl). Her vitamin D level was 21.9 ng/ml and PTH 17.8 pg/ml, both were in the normal ranges. The Drug Interaction Probability Scale score of our case was calculated as 6, indicating that the probable adverse drug reaction. Therefore, the high level of serum calcium was attributed to the interaction between ATRA and posaconazole. Management & Outcome Although hypercalcemia with ATRA and other antifungal agents have been previously reported in the literature, this is the first report of hypercalcemia with the concomitant use of ATRA and posaconazole. Discussion This case highlights the importance of monitoring ATRA’s side effects when it is used in combination with drugs inhibiting the cytochrome P450 enzymes. In conclusion, the concomitant use of posaconazole and ATRA may lead to hypercalcemia and serum calcium levels return to normal ranges with the discontinuation of these drugs.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1313 ◽  
Author(s):  
Marta Sobas ◽  
Maria Carme Talarn-Forcadell ◽  
David Martínez-Cuadrón ◽  
Lourdes Escoda ◽  
María J. García-Pérez ◽  
...  

It has been suggested that 1–2% of acute promyelocytic leukemia (APL) patients present variant rearrangements of retinoic acid receptor alpha (RARα) fusion gene, with the promyelocytic leukaemia zinc finger (PLZF)/RARα being the most frequent. Resistance to all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) has been suggested in PLZF/RARα and other variant APLs. Herein, we analyze the incidence, characteristics, and outcomes of variant APLs reported to the multinational PETHEMA (Programa para el Tratamiento de Hemopatias Malignas) registry, and we perform a systematic review in order to shed light on strategies to improve management of these extremely rare diseases. Of 2895 patients with genetically confirmed APL in the PETHEMA registry, 11 had variant APL (0.4%) (9 PLZF-RARα and 2 NPM1-RARα), 9 were men, with median age of 44.6 years (3 months to 76 years), median leucocytes (WBC) 16.8 × 109/L, and frequent coagulopathy. Eight patients were treated with ATRA plus chemotherapy-based regimens, and 3 with chemotherapy-based. As compared to previous reports, complete remission and survival was slightly better in our cohort, with 73% complete remission (CR) and 73% survival despite a high relapse rate (43%). After analyzing our series and performing a comprehensive and critical review of the literature, strong recommendations on appropriate management of variant APL are not possible due to the low number and heterogeneity of patients reported so far.


2001 ◽  
Vol 19 (20) ◽  
pp. 4023-4028 ◽  
Author(s):  
Giorgina Specchia ◽  
Francesco Lo Coco ◽  
Marco Vignetti ◽  
Giuseppe Avvisati ◽  
Paola Fazi ◽  
...  

PURPOSE: Recent reports of extramedullary disease (EMD) at recurrence in acute promyelocytic leukemia (APL) have raised increasing concern about a possible role of retinoic acid (RA) therapy. PATIENTS AND METHODS: We analyzed the risk of developing EMD localization at relapse in APL patients enrolled onto two consecutive studies of the Gruppo Italiano Malattie Ematologiche dell’Adulto. The studies investigated chemotherapy alone (LAP0389) versus RA plus chemotherapy (AIDA). RESULTS: When all relapse types were taken into account, 94 (51%) of 184 patients and 131 (18%) of 740 patients who attained hematologic remission underwent relapse in the LAP0389 and AIDA studies, respectively (P < .0001). EMD localization was documented in five (5%) of 94 and 16 (12%) of 131 patients (P = .08). Hematologic and/or molecular relapse was diagnosed concomitantly in all but two patients with EMD in the AIDA study. For patients in the LAP0389 and AIDA series, the probability of EMD localization of any type at relapse was 3% and 4.5%, respectively (P = .79), while the probability of CNS involvement was 0.6% and 2% (P = .28). No significant differences were found with regard to mean WBC count and promyelocytic leukemia/retinoic acid receptor-alpha junction type in comparisons of patients with EMD and hematologic relapse. CONCLUSION: APL patients receiving all-trans retinoic acid in addition to chemotherapy have no increased risk of developing EMD at relapse as compared with those treated with chemotherapy alone.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2175-2181 ◽  
Author(s):  
L Delva ◽  
M Cornic ◽  
N Balitrand ◽  
F Guidez ◽  
JM Miclea ◽  
...  

Abstract All-trans retinoic acid (ATRA) induces leukemic cell differentiation and complete remission (CR) in a high proportion of patients with acute promyelocytic leukemia (AML3 subtype). However, relapses occur when ATRA is prescribed as maintenance therapy, and resistance to a second ATRA-induction therapy is frequently observed. An induced hypercatabolism of ATRA has been suggested as a possible mechanism leading to reduced ATRA sensitivity and resistance. CRABPII, an RA cytoplasmic binding protein linked to RA's metabolization pathway, is induced by ATRA in different cell systems. To investigate whether specific features of the AML3 cells at relapse could explain the in vivo resistance observed, we studied the CRABP levels and in vitro sensitivity to ATRA of AML3 cells before and at relapse from ATRA. Relapse-AML3 cells (n = 12) showed reduced differentiation induction when compared with “virgin”-AML3 cells (n = 31; P < .05). Dose-response studies were performed in 2 cases at relapse and showed decreased sensitivity to low ATRA concentrations. CRABPII levels and in vitro differentiation characteristics of AML3 cells before and at relapse from ATRA therapy were studied concomittantly in 4 patients. High levels of CRABPII (median, 20 fmol/mg of protein) were detected in the cells of the 4 patients at relapse but were not detected before ATRA therapy. Three of these patients showed a decrease in differentiation induction of their leukemic cells, and a failure to achieve CR with a second induction therapy of ATRA 45 mg/m2/day was noted in all patients treated (n = 3). Results from this study provide evidence to support the hypothesis of induced-ATRA metabolism as one of the major mechanisms responsible for ATRA resistance. Monitoring CRABPII levels after ATRA withdrawal may help to determine when to administer ATRA in the maintenance or relapse therapy of AML3 patients.


Blood ◽  
2009 ◽  
Vol 114 (27) ◽  
pp. 5512-5521 ◽  
Author(s):  
Maaike Luesink ◽  
Jeroen L. A. Pennings ◽  
Willemijn M. Wissink ◽  
Peter C. M. Linssen ◽  
Petra Muus ◽  
...  

Abstract In acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) and/or arsenic trioxide can induce a differentiation syndrome (DS) with massive pulmonary infiltration of differentiating leukemic cells. Because chemokines are implicated in migration and extravasation of leukemic cells, chemokines might play a role in DS. ATRA stimulation of the APL cell line NB4 induced expression of multiple CC-chemokines (CCLs) and their receptors (> 19-fold), resulting in increased chemokine levels and chemotaxis. Induction of CCL2 and CCL24 was directly mediated by ligand-activated retinoic acid receptors. In primary leukemia cells derived from APL patients at diagnosis, ATRA induced chemokine production as well. Furthermore, in plasma of an APL patient with DS, we observed chemokine induction, suggesting that chemokines might be important in DS. Dexamethasone, which efficiently reduces pulmonary chemokine production, did not inhibit chemokine induction in APL cells. Finally, chemokine production was also induced by arsenic trioxide as single agent or in combination with ATRA. We propose that differentiation therapy may induce chemokine production in the lung and in APL cells, which both trigger migration of leukemic cells. Because dexamethasone does not efficiently reduce leukemic chemokine production, pulmonary infiltration of leukemic cells may induce an uncontrollable hyperinflammatory reaction in the lung.


2021 ◽  
Author(s):  
Ghazaleh Hoseinzadeh ◽  
Zahra Mohammadzadeh ◽  
Bahram Chahardouli ◽  
Kamran Ali Moghaddam ◽  
Seyed Asadollah Mousavi ◽  
...  

Abstract Differentiation syndrome (DS) is an inflammatory complication seen in some patients with acute promyelocytic leukemia (APL) undergoing differentiation therapy with all-trans retinoic acid (ATRA) and/or arsenic trioxide (ATO). It is unknown how DS occurs, but it is believed that it is caused by inflammatory cytokines release from differentiating leukemic cells. High mobility group box-1 (HMGB1) is a DNA-binding protein that acts as a cytokine outside of cells and may play a role in inflammation. This study was conducted to determine whether HMGB1 polymorphisms (rs1360485, rs2249825 and rs1060348) are associated with the incidence of differentiation syndrome in acute promyelocytic leukemia patients treated with all-trans retinoic acid and arsenic trioxide. One hundred and thirty APL patients and 100 healthy controls were included. Seventeen patients with differentiation syndrome were selected according to the PETHEMA criteria. Tetra-primer ARMS polymerase chain reaction (tetra-ARMS PCR) was used to determine the genotype distribution of polymorphisms. DNA sequencing was done to validate the results. In both healthy and APL patients, AA was the most frequent genotype in rs1360485 followed by AG and GG. CC, CG, and GG were the most frequent genotypes in rs2249825 polymorphism in the order mentioned. CC was more frequent than CT, and CT was more frequent than TT in rs1060348. There was no correlation between HMGB1 polymorphisms and the incidence of differentiation syndrome based on genetic models (p-value > 0.05). As a result, HMGB1 polymorphisms are not probably associated with DS development in APL patients treated with ATRA and ATO.


Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 39-45 ◽  
Author(s):  
J.H. Jansen ◽  
M.C. de Ridder ◽  
W.M.C. Geertsma ◽  
C.A.J. Erpelinck ◽  
K. van Lom ◽  
...  

The combined use of retinoic acid and chemotherapy has led to an important improvement of cure rates in acute promyelocytic leukemia. Retinoic acid forces terminal maturation of the malignant cells and this application represents the first generally accepted differentiation-based therapy in leukemia. Unfortunately, similar approaches have failed in other types of hematological malignancies suggesting that the applicability is limited to this specific subgroup of patients. This has been endorsed by the notorious lack of response in acute promyelocytic leukemia bearing the variant t(11;17) translocation. Based on the reported synergistic effects of retinoic acid and the hematopoietic growth factor granulocyte colony-stimulating factor (G-CSF), we studied maturation of t(11;17) positive leukemia cells using several combinations of retinoic acid and growth factors. In cultures with retinoic acid or G-CSF the leukemic cells did not differentiate into mature granulocytes, but striking granulocytic differentiation occurred with the combination of both agents. At relapse, the patient was treated with retinoic acid and G-CSF before reinduction chemotherapy. With retinoic acid and G-CSF treatment alone, complete granulocytic maturation of the leukemic cells occurred in vivo, followed by a complete cytogenetical and hematological remission. Bone marrow and blood became negative in fluorescense in situ hybridization analysis and semi-quantitative polymerase chain reaction showed a profound reduction of promyelocytic leukemia zinc finger–retinoic acid receptor- fusion transcripts. This shows that t(11;17) positive leukemia cells are not intrinsically resistant to retinoic acid, provided that the proper costimulus is administered. These observations may encourage the investigation of combinations of all-trans retinoic acid and hematopoietic growth factors in other types of leukemia.


Sign in / Sign up

Export Citation Format

Share Document