scholarly journals Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through ‘reverse phenotyping’

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.

2020 ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

ABSTRACTThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we used single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induced transcriptional shifts by antigenic stimulation in vitro and took advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allowed identification of SARS-CoV-2-reactive TCRs and revealed phenotypic effects introduced by antigen-specific stimulation. We characterized transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and showed correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna M. Jermakowicz ◽  
Matthew J. Rybin ◽  
Robert K. Suter ◽  
Jann N. Sarkaria ◽  
Zane Zeier ◽  
...  

AbstractBromodomain and extraterminal domain (BET) proteins have emerged as therapeutic targets in multiple cancers, including the most common primary adult brain tumor glioblastoma (GBM). Although several BET inhibitors have entered clinical trials, few are brain penetrant. We have generated UM-002, a novel brain penetrant BET inhibitor that reduces GBM cell proliferation in vitro and in a human cerebral brain organoid model. Since UM-002 is more potent than other BET inhibitors, it could potentially be developed for GBM treatment. Furthermore, UM-002 treatment reduces the expression of cell-cycle related genes in vivo and reduces the expression of invasion related genes within the non-proliferative cells present in tumors as measured by single cell RNA-sequencing. These studies suggest that BET inhibition alters the transcriptional landscape of GBM tumors, which has implications for designing combination therapies. Importantly, they also provide an integrated dataset that combines in vitro and ex vivo studies with in vivo single-cell RNA-sequencing to characterize a novel BET inhibitor in GBM.


2019 ◽  
Vol 31 (1) ◽  
pp. 118-138 ◽  
Author(s):  
Sébastien J. Dumas ◽  
Elda Meta ◽  
Mila Borri ◽  
Jermaine Goveia ◽  
Katerina Rohlenova ◽  
...  

BackgroundRenal endothelial cells from glomerular, cortical, and medullary kidney compartments are exposed to different microenvironmental conditions and support specific kidney processes. However, the heterogeneous phenotypes of these cells remain incompletely inventoried. Osmotic homeostasis is vitally important for regulating cell volume and function, and in mammals, osmotic equilibrium is regulated through the countercurrent system in the renal medulla, where water exchange through endothelium occurs against an osmotic pressure gradient. Dehydration exposes medullary renal endothelial cells to extreme hyperosmolarity, and how these cells adapt to and survive in this hypertonic milieu is unknown.MethodsWe inventoried renal endothelial cell heterogeneity by single-cell RNA sequencing >40,000 mouse renal endothelial cells, and studied transcriptome changes during osmotic adaptation upon water deprivation. We validated our findings by immunostaining and functionally by targeting oxidative phosphorylation in a hyperosmolarity model in vitro and in dehydrated mice in vivo.ResultsWe identified 24 renal endothelial cell phenotypes (of which eight were novel), highlighting extensive heterogeneity of these cells between and within the cortex, glomeruli, and medulla. In response to dehydration and hypertonicity, medullary renal endothelial cells upregulated the expression of genes involved in the hypoxia response, glycolysis, and—surprisingly—oxidative phosphorylation. Endothelial cells increased oxygen consumption when exposed to hyperosmolarity, whereas blocking oxidative phosphorylation compromised endothelial cell viability during hyperosmotic stress and impaired urine concentration during dehydration.ConclusionsThis study provides a high-resolution atlas of the renal endothelium and highlights extensive renal endothelial cell phenotypic heterogeneity, as well as a previously unrecognized role of oxidative phosphorylation in the metabolic adaptation of medullary renal endothelial cells to water deprivation.


2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii1-ii1
Author(s):  
Thomas Lai ◽  
Janet Treger ◽  
Jingyou Rao ◽  
Tie Li ◽  
Albert Lai ◽  
...  

Abstract Introduction The immunotherapeutic targeting of New York-esophageal squamous cell carcinoma (NY-ESO-1) and other cancer/testis antigens (CTA) is an appealing strategy for the treatment of malignant gliomas because CTA are not expressed in most normal adult tissues and their expression can be induced in tumors for targeting by T-cells. Basally, NY-ESO-1 is often poorly expressed in glioblastoma (GBM), presumably through promoter methylation. Mechanisms governing the expression of CTA have been explored in other cancers; however, neither the prevalence of NY-ESO-1 downregulation in GBM patient tumors nor the presumed mechanism of downregulation by promoter methylation in GBM has been formally established. Methods We characterized baseline CpG methylation of NY-ESO-1 in 30 bulk patient GBM samples, 10 patient-derived gliomaspheres, and three established tumor cell lines using bisulfite sequencing. We induced NY-ESO-1 expression in vitro in U251 human GBM cells using the hypomethylating agent decitabine (DAC). We investigated the epigenetic response of DAC-treated U251 with bisulfite sequencing and NY-ESO-1 expression with quantitative real-time PCR. Lastly, we performed single-cell RNA sequencing on DAC-treated GBM U251 to evaluate tumor subpopulations that upregulate NY-ESO-1 and other co-expressed CTA after DAC treatment. Results Baseline NY-ESO-1 expression is associated with promoter methylation in the majority of GBM. Treatment of cells with 1 µM DAC every day for 4 days explicitly demethylated the promoter region of NY-ESO-1 and resulted in a 1000-fold increase in mRNA expression. DAC treatment upregulates NY-ESO-1 coordinately with other cancer/testis antigens CTAG2 and MAGEA4 as demonstrated by single-cell RNA sequencing. Conclusion Exposure of U251 to DAC results in promoter demethylation in NY-ESO-1 and increased expression of CTA. DAC treatment may therefore render GBM susceptible to targeting of these antigens by T-cells, revealing a feasible strategy of NY-ESO-1 and co-expressed CTA promoter demethylation to sensitize GBM to immunotherapy.


2021 ◽  
pp. jmedgenet-2020-107447
Author(s):  
Lev Prasov ◽  
Brenda L Bohnsack ◽  
Antonette S El Husny ◽  
Lam C Tsoi ◽  
Bin Guan ◽  
...  

BackgroundSingleton-Merten syndrome (SGMRT) is a rare immunogenetic disorder that variably features juvenile open-angle glaucoma (JOAG), psoriasiform skin rash, aortic calcifications and skeletal and dental dysplasia. Few families have been described and the genotypic and phenotypic spectrum is poorly defined, with variants in DDX58 (DExD/H-box helicase 58) being one of two identified causes, classified as SGMRT2.MethodsFamilies underwent deep systemic phenotyping and exome sequencing. Functional characterisation with in vitro luciferase assays and in vivo interferon signature using bulk and single cell RNA sequencing was performed.ResultsWe have identified a novel DDX58 variant c.1529A>T p.(Glu510Val) that segregates with disease in two families with SGMRT2. Patients in these families have widely variable phenotypic features and different ethnic background, with some being severely affected by systemic features and others solely with glaucoma. JOAG was present in all individuals affected with the syndrome. Furthermore, detailed evaluation of skin rash in one patient revealed sparse inflammatory infiltrates in a unique distribution. Functional analysis showed that the DDX58 variant is a dominant gain-of-function activator of interferon pathways in the absence of exogenous RNA ligands. Single cell RNA sequencing of patient lesional skin revealed a cellular activation of interferon-stimulated gene expression in keratinocytes and fibroblasts but not in neighbouring healthy skin.ConclusionsThese results expand the genotypic spectrum of DDX58-associated disease, provide the first detailed description of ocular and dermatological phenotypes, expand our understanding of the molecular pathogenesis of this condition and provide a platform for testing response to therapy.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi260-vi261
Author(s):  
Anirudh Sattiraju ◽  
Valerie Marallano ◽  
Roland Friedel ◽  
Hongyan Zou

Abstract Glioblastoma (GBM) is the most common and lethal brain cancer that invariably recurs after therapy due to presence of resistant GBM cells within hypoxic and peri-necrotic regions. Eradicating such GBM cells, which constitute a major source of tumor recurrence, is important to curb disease relapse. An endogenously expressed, spatially sensitive hypoxia reporter would therefore be a valuable tool to evaluate hypoxic zones in GBM in detail, and to measure the efficacy of hypoxia-activated drugs. For this purpose, we engineered a lentiviral vector that carries a hypoxia reporter, consisting of HIF response elements (HRE) that drive expression of UnaG fluorescent protein, which fluoresces independent of oxidative maturation. We validated the sensitivity of our reporter in vitro using U87MG, GBM2, and patient-derived GBM stem cell lines, and we performed intracranial transplantations of GBM cells in SCID mice to identify cells undergoing hypoxic stress in in vivo microenvironment. In addition, GL261 murine GBM cells with hypoxia reporter were intracranially implanted in C57BL/6 mice as syngeneic model for studies on immune responses. Brains from our transplant studies were dissociated and single-cell RNA sequencing (Drop-Seq) was performed to investigate heterogeneity in response to hypoxia within GBM cells and the cellular composition of microenvironment. We will also apply a hypoxia-activated prodrug, Evofosfamide (Evo), in our ongoing studies that can potentially eradicate hypoxic tumor cells and increase T cell infiltration and reverse immune suppression. As hypoxic niches are thought to confer resistance to radiation therapy (XRT), combining XRT with Evo could thus improve therapy efficacy. Our hypoxia gene reporter, combined with single-cell transcriptomics, could therefore serve as an effective tool to enable fundamental investigation of GBM microenvironment and could be used to evaluate therapies targeting tumor microenvironment to enhance GBM patient survival.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A268-A269
Author(s):  
Kartik Sehgal ◽  
Andrew Portell ◽  
Elena Ivanova ◽  
Patrick Lizotte ◽  
Navin Mahadevan ◽  
...  

BackgroundTo understand fundamental mechanisms of immune escape, we leveraged our functional ex vivo platform of murine derived organotypic tumor spheroids (DOTS)1 to determine if drug-tolerant persister cells analogous to oncogene targeted therapies limit efficacy of programmed death (PD)-1 blockade, and to identify therapeutic vulnerabilities to overcome anti-PD-1 (αPD-1) resistance.MethodsMurine syngeneic cancer models with well-characterized response to αPD-1 therapy were chosen: MC38 (sensitive) and CT26 (partially resistant). Bulk and single-cell (sc) RNA-sequencing (RNA-seq) were performed on αPD-1 treated DOTS. In vitro culture studies were conducted with or without cytokines (100 ng/ml) or drugs (500 nM). In vivo studies in mice bearing MC38 or CT26 tumors evaluated the combinatorial strategy with PD-1 blockade. We further evaluated our findings in scRNA-seq of an αPD-1 refractory colorectal cancer (CRC) patient tumor.2ResultsBulk RNA-seq of αPD-1 treated DOTS revealed a mesenchymal resistant phenotype with upregulated TNF-α/NFκB signaling (figure 1). scRNA-seq further identified a discrete sub-population of immunotherapy persister cells (IPCs). These cells expressed a stem-like phenotype including downregulation of E2F targets indicative of quiescence, suppression of interferon-γ response genes, induction of hybrid epithelial-to-mesenchymal state, and active IL-6 signaling (figure 1). Ly6a/stem cell antigen-1 (Sca-1) and Snai1 were found to be differentially upregulated in IPCs resistant to PD-1 blockade (not shown). Sca-1 positivity was confirmed in pre-existing tumor populations in vitro (figure 2). When enriched via sorting, these cells remained more persistently Sca-1+ at 96 hours in culture of CT26 compared to MC38 cells, related to increased autocrine IL-6 production by CT26 Sca-1+ cells. Indeed, IL-6 supplementation was capable of expanding Sca-1+ cells in culture (figure 2). Sca-1+ cells expressing ovalbumin peptide were refractory to OT-1 T cell mediated killing and failed to upregulate MHC class-1 antigen presentation (H-2Kb) in response to IL-6, in contrast to interferon-γ (not shown). Analysis of RNA-seq data further identified Birc2/3 as potential targets limiting TNF-mediated apoptosis of these cells (not shown). Notably, Birc2/3 antagonism depleted Sca-1+ IPCs in vitro and significantly potentiated the impact of PD-1 blockade in vivo in MC38, and less robustly in CT26 (figure 3). Evaluation in a microsatellite-instability high CRC patient identified a pre-existent IPC subpopulation within the αPD-1 refractory pre-treatment tumor, with high SNAI1 expression compared to CRC samples in TCGA (figure 4).Abstract 248 Figure 1Bulk and single-cell (sc) RNA-sequencing (RNA-seq) of MDOTS identifies an anti-PD-1 (αPD-1) resistant subpopulation of persister cells. IgG= isotype controlAbstract 248 Figure 2Pre-existent population of stem cell antigen-1 (Sca-1)+ cells expands in response to interleukin-6 (IL-6), as characterized by flow cytometry evaluation in murine syngeneic cancer models at baseline and after purification by fluorescence-activated cell sorting (FACS). H = hoursAbstract 248 Figure 3Combination of anti-PD-1 therapy with Birc2/3 antagonism increases tumor responses and improves survival. CR = complete responseAbstract 248 Figure 4Single-cell RNA-sequencing (scRNA-seq) of a pre-treatment microsatellite-instability (MSI-H) colorectal cancer (CRC) patient tumor, refractory to anti-PD-1 (αPD-1) therapy, reveals presence of SNAI1-high immunotherapy persister cellsConclusionsHigh-resolution functional ex vivo profiling identified Sca-1+/Snai1high stem-like ‘immunotherapy persister cells‘ and uncovered their anti-apoptotic dependencies targetable with Birc2/3 antagonism to augment αPD-1 efficacy.Ethics ApprovalThis study was approved by the Dana-Farber Animal Care and Use Committee and Novartis Institutional Animal Care and Use Committee. Informed written consent to participate in Dana-Farber/Harvard Cancer Center institutional review board (IRB)-approved research protocols was obtained from the human subject. A copy of the written consent is available for review by the Editor of this journal. The study was conducted per the WMA Declaration of Helsinki and IRB-approved protocols.ReferencesJenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, et al. Ex Vivo Profiling of PD-1 Blockade using organotypic tumor spheroids. Cancer Discov. 2018;8(2):196–668 215.Gurjao C, Liu D, Hofree M, AlDubayan SH, Wakiro I, Su MJ, et al. intrinsic resistance to immune checkpoint blockade in a mismatch repair-deficient colorectal cancer. Cancer Immunol Res 2019;7(8):1230–6.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 503 ◽  
Author(s):  
Oliver Krenkel ◽  
Jana Hundertmark ◽  
Thomas Ritz ◽  
Ralf Weiskirchen ◽  
Frank Tacke

Activation of hepatic stellate cells (HSCs) and their trans-differentiation towards collagen-secreting myofibroblasts (MFB) promote liver fibrosis progression. During chronic liver disease, resting HSCs become activated by inflammatory and injury signals. However, HSCs/MFB not only produce collagen, but also secrete cytokines, participate in metabolism, and have biomechanical properties. We herein aimed to characterize the heterogeneity of these liver mesenchymal cells by single cell RNA sequencing. In vivo resting HSCs or activated MFB were isolated from C57BL6/J mice challenged by carbon tetrachloride (CCl4) intraperitoneally for 3 weeks to induce liver fibrosis and compared to in vitro cultivated MFB. While resting HSCs formed a homogenous population characterized by high platelet derived growth factor receptor β (PDGFRβ) expression, in vivo and in vitro activated MFB split into heterogeneous populations, characterized by α-smooth muscle actin (α-SMA), collagens, or immunological markers. S100 calcium binding protein A6 (S100A6) was a universal marker of activated MFB on both the gene and protein expression level. Compared to the heterogeneity of in vivo MFB, MFB in vitro sequentially and only transiently expressed marker genes, such as chemokines, during culture activation. Taken together, our data demonstrate the heterogeneity of HSCs and MFB, indicating the existence of functionally relevant subsets in hepatic fibrosis.


Gut ◽  
2019 ◽  
Vol 69 (3) ◽  
pp. 551-563 ◽  
Author(s):  
Oliver Krenkel ◽  
Jana Hundertmark ◽  
Ali T Abdallah ◽  
Marlene Kohlhepp ◽  
Tobias Puengel ◽  
...  

ObjectiveBone marrow-derived myeloid cells accumulate in the liver as monocytes and macrophages during the progression of obesity-related non-alcoholic fatty liver disease (NAFLD) to steatohepatitis (NASH). Myeloid cells comprise heterogeneous subsets, and dietary overnutrition may affect macrophages in the liver and bone marrow. We therefore aimed at characterising in depth the functional adaptations of myeloid cells in fatty liver.DesignWe employed single-cell RNA sequencing to comprehensively assess the heterogeneity of myeloid cells in the liver and bone marrow during NAFLD, by analysing C57BL/6 mice fed with a high-fat, high-sugar, high-cholesterol ‘Western diet’ for 16 weeks. We also characterised NAFLD-driven functional adaptations of macrophages in vitro and their functional relevance during steatohepatitis in vivo.ResultsSingle-cell RNA sequencing identified distinct myeloid cell clusters in the liver and bone marrow. In both compartments, monocyte-derived populations were largely expanded in NASH-affected mice. Importantly, the liver myeloid compartment adapted a unique inflammatory phenotype during NAFLD progression, exemplarily characterised by downregulated inflammatory calprotectin (S100A8/A9) in macrophage and dendritic cell subsets. This distinctive gene signature was also found in their bone marrow precursors. The NASH myeloid phenotype was principally recapitulated by in vitro exposure of bone marrow-derived macrophages with fatty acids, depended on toll-like receptor 4 signalling and defined a characteristic response pattern to lipopolysaccharide stimulation. This imprinted and stable NASH myeloid immune phenotype functionally determined inflammatory responses following acute liver injury (acetaminophen poisoning) in vivo.ConclusionLiver myeloid leucocytes and their bone marrow precursors adapt a common and functionally relevant inflammatory signature during NAFLD progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katharina Rindler ◽  
Wolfgang M. Bauer ◽  
Constanze Jonak ◽  
Matthias Wielscher ◽  
Lisa E. Shaw ◽  
...  

Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma. While initially restricted to the skin, malignant cells can appear in blood, bone marrow and secondary lymphoid organs in later disease stages. However, only little is known about phenotypic and functional properties of malignant T cells in relationship to tissue environments over the course of disease progression. We thus profiled the tumor micromilieu in skin, blood and lymph node in a patient with advanced MF using single-cell RNA sequencing combined with V-D-J T-cell receptor sequencing. In skin, we identified clonally expanded T-cells with characteristic features of tissue-resident memory T-cells (TRM, CD69+CD27-NR4A1+RGS1+AHR+). In blood and lymph node, the malignant clones displayed a transcriptional program reminiscent of a more central memory-like phenotype (KLF2+TCF7+S1PR1+SELL+CCR7+), while retaining tissue-homing receptors (CLA, CCR10). The skin tumor microenvironment contained potentially tumor-permissive myeloid cells producing regulatory (IDO1) and Th2-associated mediators (CCL13, CCL17, CCL22). Given their expression of PVR, TNFRSF14 and CD80/CD86, they might be under direct control by TIGIT+CTLA4+CSF2+TNFSF14+ tumor cells. In sum, this study highlights the adaptive phenotypic and functional plasticity of MF tumor cell clones. Thus, the TRM-like phenotype enables long-term skin residence of MF cells. Their switch to a TCM-like phenotype with persistent skin homing molecule expression in the circulation might explain the multi-focal nature of MF.


Sign in / Sign up

Export Citation Format

Share Document