Nodular lymphocyte-predominant Hodgkin lymphoma with nodules resembling T-cell/histiocyte-rich B-cell lymphoma: differential diagnosis between nodular lymphocyte-predominant Hodgkin lymphoma and T-cell/histiocyte-rich B-cell lymphoma

Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3753-3758 ◽  
Author(s):  
Ludmila Boudová ◽  
Emina Torlakovic ◽  
Jan Delabie ◽  
Peter Reimer ◽  
Beate Pfistner ◽  
...  

AbstractNodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) and T-cell/histiocyte-rich B-cell lymphoma (T/HRBCL) are distinct tumors and are treated differently. They are linked by a morphologic and probably a biologic continuum, which renders the differential diagnosis difficult. To develop criteria to distinguish the entities along the morphologic continuum, we correlated the lymph node architecture and immunophenotype of both tumor cells and reactive components of 235 neoplasms in the spectrum of NLPHL and T/HRBCL with clinical data. Two hundred and eighteen cases fitted the World Health Organization (WHO) criteria of NLPHL (139) or T/HRBCL (79). While tumor cells in both entities were immunophenotypically similar, background composition differed: in NLPHL small B cells and CD3+CD4+CD57+ T cells were common, whereas in T/HRBCL, CD8+ cytotoxic T cells and histiocytes dominated. Follicular dendritic cells (FDCs) formed expanded meshworks in NLPHL, whereas they were absent in T/HRBCL. Seventeen cases represented a gray zone: within FDC meshworks, neoplastic B cells resided in a background depleted of small B cells but rich in T cells and histiocytes. Tumor cells either were loosely scattered or formed clusters, thus resembling areas of either T/HRBCL or inflammatory diffuse large BCL (DLBCL) within the nodules. Patients with these NLPHLs with T-cell/histiocyte-rich nodules presented at a high stage and with B symptoms, as in T/HRBCL, but had an excellent survival, as in NLPHL. This morphologic pattern suggests a biologic continuum between NLPHL and T/HRBCL. (Blood. 2003;102:3753-3758)

2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S107-S107
Author(s):  
E Ozluk ◽  
E Wei

Abstract Introduction/Objective Growth patterns of nodular lymphocyte predominant Hogdkin lymphoma (NLPHL) has been further described by Fan et all. Pattern E is T cell/histiocyte rich large B-cell lymphoma-like and is quite rare. The treatment usually may follow large B cell lymphoma protocol instead of Hodgkin lymphoma regimen. Methods Here we report a patient with NLPHL pattern E. Patient was a 25 years-old African American man who initially presented with generalized lymphadenopathy. Results Biopsy of the axillary lymph node revealed effaced lymph node architecture by a malignant neoplasm in a diffuse and vaguely nodular pattern. In the background of a diffuse infiltrate, there were small to medium sized lymphocytes, numerous atypical large cells with irregular, basophilic nucleoli, and variable cytoplasm. The large cells focally sheeted out. Many histiocytes were also seen in the background. The large atypical cells were positive for CD20, BOB-1, OCT2, BCL-2 (focally), BCL-6, PAX5, and MUM-1, and IgD, whereas negative for BCL-1, CD10, CD15, CD30. CD2, CD3, CD4, CD5, CD7, CD8 highlighted numerous T cells with mild cytological atypia, forming rosettes around the large atypical cells. T cells were negative for ALK-1, CD1a, TdT with increased Ki-67 proliferation index around 35%. Although the surrounding T cells appear atypical in morphology, flow cytometric analysis showed predominantly reactive T-cells with no loss of T-cell associated antigens. PCR analysis showed a producible peak in a single IgH reaction. However, the fragment size of the peak observed did not meet the criteria. T-cell gene rearrangement by TCR gamma and TCR beta PCR was negative for monoclonal T-cells. BCL-1, BCL-2, and BCL-6 FISH panel were negative for gene rearrangements. Based on these findings the diagnosis was made at stage IV. Patient started treatment with R-CHOP therapy with subsequent relapse. Patient has been placed on RICE chemotherapy with partial response. Conclusion NLPHL Pattern E type should be differentiated from classical Hodgkin lymphoma, diffuse large B-cell lymphoma and peripheral T cell lymphoma because the treatment greatly differs from those with higher stage and tendency for recurrence. It is the pathologist role to lead the clinician and render a correct histopathologic diagnosis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2684-2684
Author(s):  
Nasir Bakshi ◽  
Mansoor Aljabry ◽  
Saad Akhter ◽  
Irfan Maghfoor ◽  
Ayman Mashi

Abstract Abstract 2684 NLPHL accounts for 6.5% of all Hodgkin lymphoma cases in the West. It is characterized by a nodular or a nodular & diffuse proliferation of scattered large atypical CD20+ neoplastic B-cells referred to as lymphocyte predominant (LP) cells and typically associated with small lymphocytes mainly of B-cell type. Patients with NLPHL typically have an indolent clinical course but can frequently relapse. Progression to a higher grade lymphoma, notably T-cell/Histiocyte rich B-cell lymphoma (T/HRBCL) has been described in a relatively small number of cases. Because of its rarity, limited information is available about the role of non-neoplastic lymphocytes in NLPHL. Some studies suggest that NLPHL with T-cell rich background may behave differently than the conventional type with predominance of B-cells within the nodules. The purpose of this study was to evaluate outcomes of differential tumor microenvironment namely B-cell versus T-cell rich in patients with NLPHL. We document the clinicopathologic profiles of 29 patients with biopsy proven NLPHL, consisting of 22 male & 7 female, median age 26 years (range, 13–80 years). All patients had lymphoadenopathy & 2 cases showed extranodal involvement in addition to nodal disease. Two patients had a bulky mass, and three had stage 4 disease at presentation. The pathological diagnoses was reviewed and confirmed by an expert hematopathologist in all 29 cases. The LP cells in all cases had a prototypic immunophenotype of CD20+, CD79a+, PU.1+, Bcl-6+, CD15− CD30− & Fascin−. T/HRBCL was excluded as all cases demonstrated preservation of follicular dendritic meshwork by CD21 staining. The meshwork was expanded in 20 cases & in 9 cases it was partially disrupted evincing an irregular architectural pattern. Epstein-Barr Virus encoded RNA by in situ hybridization was negative in 8/8 cases tested. 27/29 patients received systemic multi-agent chemotherapy consisting of: doxorubicin, bleomycin, vinblastine, and dacarbacin (ABVD), 24 patients; cyclophosphamide, doxorubicin, vincristin, and prednisone (CHOP), 2 patients; Rituximab + CHOP (R-CHOP), 1 patient. 9/29 (31%) cases underwent autologous stem cell transplant. One patient in stage 2A refused therapy and one patient (stage 3A) developed significantly decreased cardiac ejection fraction following initial 2 cycles of ABVD. Both of these cases did not have adequate follow-up information available. Results: Twelve of the 29 cases (42%) were designated as having T-cell rich background population, whereas 17 (58%) were considered as conventional variant with a vast predominance of non-neoplastic small lymphocytes being B-cells. A few of the cases seemed to show admixture of both B-cells & T-cells. Comparing T-cell rich & B-cell rich background NLPHL no significant differences were detected in clinical parameters: age, sex, and stage at presentation, absolute lymphocyte count, LDH & Hb. All 27 (100%) patients in this study responded to first-line treatment: 23 with complete response & 4 with partial response. 13/27 (48%) had relapse/s. Five cases had more than one relapses. No patient died within a clinical follow-up period ranging from 18 to 84 months. When the overall survival (OS) of T-cell rich NLPHL was compared with the conventional variant there was no statistical significance between the two groups (log rank p= 0.1206). However, comparison of relapse rate showed that cases with T-cell rich background had higher relapse rate as well as greater incidence of multiple relapses as compared to B-cell rich type of NLPHL even after adjusting for the type of treatment received (log rank p= 0.003). Moreover, 2/12 (17%) T-cell rich NLPHL cases showed transformation to a high grade lymphoma (both T/HRBCL) at the time of recurrence. These findings suggest that in NLPHL a tumor microenvironment rich in T-cells rather than B-cells is characterized by an unfavorable clinical course although OS appears to be similar. These cases perhaps represent a distinctive clinicopathologic variant within the framework of NLPHL. Lately, the term ‘NLPHL with nodules resembling T/HRBCL’ has been used to express the immunobiological overlap between these two entities. It is possible that such cases could be regarded as “intermediate lymphomas” treading between NLPHL and T/HRLBCL. Further studies using gene array profiling analysis may help clarify the molecular differences between these closely related entities. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A879-A880
Author(s):  
Abir Zainal ◽  
Jhansi Maradana ◽  
Mira Torres

Abstract Introduction: T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) is a rare form of large B-cell lymphoma, which usually involves the lymph nodes exclusively. We describe a patient with Hashimoto’s thyroiditis who was discovered to have THRLBCL arising from the thyroid. Clinical Case: A 78-year-old female with a history of Hashimoto’s thyroiditis noted increase in the size of her left thyroid lobe for two months despite normal TSH on Levothyroxine, prompting an ultrasound which revealed several enlarged left sided cervical lymph nodes and an enlarged left thyroid gland. Cytology from an FNA of a left level 3 lymph node showed atypical lymphoid infiltrate featuring scattered large atypical cells in a background of small lymphocytes. Immunohistochemical testing was PAX5+, CD30- and CD15-. Cytology from an FNA of left thyroid revealed identical changes and immunohistochemistry demonstrated PAX5+ and CD20+. Concurrent flow cytometric studies demonstrated increased CD4 to CD8 ratio among T cells. Excisional biopsy of a left cervical lymph node confirmed a diagnosis of THRLBCL. PET/CT exhibited lymphadenopathy above her diaphragm and splenic involvement. Her bone marrow biopsy was negative for involvement. She was deemed Stage III with international prognostic index (IPI) of 2 corresponding with low-intermediate risk. She was commenced on chemotherapy R-CHOP with plan to complete 6 cycles. Discussion: THRLBCL is characterized by scattered atypical B lymphocytes on a background of T lymphocytes and histiocytes. Usually, T-cells are predominantly CD8+, in contrast to our patient. Some studies identified cases of predominant CD4+ and PD1+ T cells. Cytology revealed scattered small B-cells and large B-cells, a feature that is not typically seen in THRLBCL. A diagnosis of diffuse transformation of nodular lymphocyte predominant Hodgkin lymphoma was considered but the diffuse proliferation outside of CD21+ and involvement of the thyroid is not compatible with such diagnosis. Similarly, a diagnosis of follicular helper T-cell lymphoma with admixed large B-cells was considered but while PD1+ CD4+ T cells are present, there was no aberrant antigen expression by flow cytometry or T cell clonality. THRLBCL mainly involves lymph nodes and presents at advanced Ann Arbor stages with high IPI. Malignant lymphomas of the thyroid gland are exceedingly rare, accounting for 2% of thyroid cancers, out of which the literature reveals a single case report of THRLBCL arising from the thyroid. THRLBCL represents an aggressive form of lymphoma and is treated according to stage-matched DLBCL, although the effects of Rituximab in this population is variable. Conclusion: Hashimoto’s is considered a risk for thyroid lymphoma usually diffuse large B-cell lymphoma and MALT lymphoma. We present a rare case of THRLBCL occurring in the setting of Hashimoto’s with acute thyroid gland enlargement.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 19-19
Author(s):  
Katsuyoshi Takata ◽  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katy Milne ◽  
Tomoko Miyata-Takata ◽  
...  

Background: LAG3 is one of the immune check point receptors that are expressed on activated cytotoxic T-cells and regulatory T cells. Physiologically, T-cell proliferation and memory T-cell differentiation is negatively regulated by LAG3-MHC interaction. In cancer tissues, T-cells that are chronically exposed to tumor antigens might upregulate LAG3 and receive inhibitory stimuli to enter an exhaustion state limiting anti-tumor immune responses. Currently, clinical trials using double blockade of LAG3/PD1 are active in several solid tumours, but there are only a small number of clinical trials using LAG3 monoclonal antibodies in lymphoma. Recently, we published a characteristic LAG3+ T-cell population as a mediator of immune suppression in classical Hodgkin lymphoma (Aoki & Chong et al. Cancer Discovery 2020). However, the abundance and variability of LAG3 positive T-cell populations across a spectrum of B-cell lymphoma has not been well studied and it remains an open question if LAG3 expression is associated with treatment outcome under standard-of-care conditions. Methods: We performed a LAG3 immunohistochemical (IHC) screen in a large cohort of B-cell Non-Hodgkin lymphoma (diffuse large B-cell lymphoma (DLBCL); N=341, follicular lymphoma (FL); N=198 (grade 1-3A), transformed FL to aggressive lymphoma (tFL); N=120, mantle cell lymphoma (MCL); N=179, primary mediastinal large B-cell lymphoma (PMBCL); N=61) and classical Hodgkin lymphoma (HL; N=459) to assess LAG3 expression in the tumor microenvironment (TME). Moreover, we characterized LAG3+ T-cell populations using multi-color immmunohistochemistry (IHC) (LAG3, PD1, CD4, CD8, FOXP3, CD20) in various lymphoma subtypes. Clinical parameters including treatment outcome were correlated with the abundance of LAG3+ T-cell populations in the TME. Results: On average, HL (7%) and PMBCL (6%) showed higher LAG3+ cellular frequency than the other B-cell lymphoma subtypes studied (DLBCL and FL: 2%, MCL: 0.8%). Comparing the frequency of LAG3+ cells according to MHC class I/II status, DLBCL showed a significant correlation with MHC class I status, and LAG3 expression correlated with MHC class II status in HL. Next, we performed multi-color IHC to describe subtype-specific expression patterns of LAG3 in T cell subsets. LAG3+PD1- T-cells were predominantly found in HL and PMBCL with only rare LAG3+PD1+ cells in HL. The majority of LAG3+ T-cells co-expressed CD4 in HL, in contrast to CD8 in PMBCL. DLBCL showed a mixed population pattern with a 1:1 ratio of LAG3+PD1- and LAG3+PD1+ T-cells. In FL, the majority of LAG3+ T-cells were CD4+PD1+, suggesting a more exhausted TME phenotype in FL than in other lymphoma subtypes. Cellular distance analysis showed that LAG3+CD4+ T-cells were in close vicinity to CD20+ lymphoma cells in FL, while in DLBCL and PMBCL, the nearest neighbors of malignant cells were LAG3+CD8+. Triple-positive LAG3+PD1+CD8+ T-cells significantly correlated with high infiltrating M2 macrophage (Pearson's correlation test, P < 0.001) content and the ABC cell-of-origin subtype (Pearson's correlation test, P = 0.002) in DLBCL. The abundance of LAG3+CD8+PD1- cells correlated with a high FLIPI score (Pearson's correlation test, P = 0.033), disease specific survival (HR = 2.8, 95% CI = 1.3-5.9, P = 0.006), time to progression (HR = 2.8, 95% CI = 1.6-5.0, P = 0.001) and transformation (HR = 4.0, 95%CI = 1.7-9.6, P = 0.002) in FL treated with R-CVP (N = 135). Assessing LAG3 expression by single color IHC in FL (cut-off at 5%), patients with LAG3-positive samples showed significantly higher FL transformation rates (P = 0.023) and tFL samples showed higher abundance of LAG3+ cells than the corresponding primary pretreatment FL samples (primary FL: 1.5±1.7% vs. tFL: 4.2±3.8%, t-test, P = 0.01). The increased transformation risk was validated in an independent FL cohort treated with R-CHOP/CVP (N=97, HR = 6.2, 95% CI = 2.8-13.9, P < 0.001). Conclusion: The highest abundance of LAG3+ T-cells in the TME was found in HL and its related entity PMBCL. The differential outcome correlations and co-expression patterns in LAG3+ T cells across B-cell lymphoma subtypes indicate heterogeneity in TME composition and related pathogenic mechanisms. Our results suggest that LAG3 expression patterns will be important in the interpretation of ongoing studies and highlight populations that may benefit from LAG3 checkpoint inhibition. Disclosures Sehn: AstraZeneca: Consultancy, Honoraria; Genentech, Inc.: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Chugai: Consultancy, Honoraria; TG therapeutics: Consultancy, Honoraria; Verastem Oncology: Consultancy, Honoraria; Teva: Consultancy, Honoraria, Research Funding; Servier: Consultancy, Honoraria; F. Hoffmann-La Roche Ltd: Consultancy, Honoraria, Research Funding; MorphoSys: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Apobiologix: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Kite: Consultancy, Honoraria; Merck: Consultancy, Honoraria; Lundbeck: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Acerta: Consultancy, Honoraria. Savage:Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie, Servier: Consultancy; BeiGene: Other: Steering Committee; Roche (institutional): Research Funding; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie: Honoraria. Scott:Celgene: Consultancy; Abbvie: Consultancy; AstraZeneca: Consultancy; NIH: Consultancy, Other: Co-inventor on a patent related to the MCL35 assay filed at the National Institutes of Health, United States of America.; Roche/Genentech: Research Funding; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoString, Research Funding; Janssen: Consultancy, Research Funding. Steidl:Bayer: Consultancy; Juno Therapeutics: Consultancy; Roche: Consultancy; Seattle Genetics: Consultancy; Bristol-Myers Squibb: Research Funding; AbbVie: Consultancy; Curis Inc: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1572-1572
Author(s):  
Xiaoxian Zhao ◽  
Bartlomiej Przychodzen ◽  
Juraj Bodo ◽  
Lisa Durkin ◽  
Daniel Lindner ◽  
...  

Introduction: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive type of lymphoma that accounts for about 20% of peripheral T-cell lymphomas with a 5 year overall survival rate of 30%. As most patients relapse after anthracycline-containing regimens and newer agents such as histone deacetylase inhibitors, other novel therapeutic approaches are needed. Signaling lymphocytic activation molecule F7 (SLAMF7), a molecule expressed on a subset of T-cells, activated B cells and myeloma cells, is an attractive target to explore based on our previous studies showing SLAMF7 expression in a subset of AITL cases. The association of AITL with Epstein Barr virus (EBV) positive B-cells is nearly always present and the efficacy of treatment in such patients with significant EBV viral load is not well-understood. In this study, we performed the molecular characterization of an aggressive EBV+ AITL case, established a patient-derived xenograft (PDX) AITL model of coexisting T and B-cell proliferations and evaluated novel therapeutic strategies. Methods: Primary tumor cells were injected into a NSG mouse. Flow cytometry, immunohistochemistry (IHC), CISH-EBER and BIOMED 2 PCR based clonality studies were used to confirm the engraftment and compared the consistency of engrafted tumor cells with the primary sample. Genomic DNA extracted from sorted T and B cells and from paired normal neutrophils of the original patient were subjected to Whole Exome sequencing (WES). In vivo AITL PDX model trials were tested for the efficacy of romidepsin (Rom), elotuzumab (Elo), rituximab (Rit) and in combinations of these drugs. Results: A 53 year old woman with AITL was treated with 6 cycles of CHOEP followed by autologous stem cell transplantation. 3 months after transplantation (9 months after diagnosis) she developed progressive fatigue and arthralgias. PET-CT scan showed new cervical, thoracic, abdominal and pelvic lymphadenopathy. A cervical lymph node biopsy was performed to confirm relapse. IHC staining showed atypical T cells expressing CD2, CD3, CD4, CD5, CD7, CD10, BCL6, PD1, SLAMF7 and CXCL13. Scattered CD20+/EBER+ B-immunoblasts were present with focal large clusters/small sheets. Primary tumor cells engrafted in NSG mouse via tail vein injection caused splenomegaly. Flow cytometry assay demonstrated the engraftment of tumor cells in peripheral blood, bone marrow and spleen tissue. CD3+CD19- cells dominated the engrafted cells in all three tissues. Histologic examination and immunophenotyping (IHC and EBER staining) of spleen were consistent with primary tumor tissue. Engrafted tumor cells were capable of serial passage in NSG mice with an increasing malignant B cell percentage that mimics the situation in which the B-cell component masks an underlying T-cell lymphoma in humans. T-cell receptor gene rearrangement assay confirmed the clonal identity of engrafted T-cells matched the primary relapsed tumor. A clonal IGH rearrangement of engrafted B-cells was also detected, while no monoclonal B-cell population was detected in the relapsed AITL sample, possibly due to the low number of EBV+ B-cells present in that biopsy. WES of sorted malignant T-cells showed 33 mutants in 31genes, including RhoA G17V, TET2,STAT3 and VAV1, previously described in AITL or other T-cell lymphomas. In parallel WES assay, 9 mutations were found in 9 genes from sorted EBV+ B immunoblasts. A PDX model using cells harvested from the second passage showed single agent, Elo or Rit, extended the survival of mice compared to the control group (p < 0.05). Rom alone had no such effect (p = 0.27). Combination of Rit with either Elo or Rom further improved survival compared to each single agent exposed cohort (p < 0.05). There was no significant difference between Rit/Elo and Rit/Rom (p = 0.067). PARP cleavage by IHC was higher in the Rit/Rom and Rit/Elo groups compared to other cohorts. Expression of SLAMF7 in a subset of engrafted T and B cells of the control mouse were confirmed via flow cytometry assay. Conclusions: To date, this is the first molecular characterization of AITL tumor cells in comparison with associated EBV+ B cells and use of such a PDX model for therapeutic evaluation of agents targeting both malignant T and B cells simultaneously. The in vivo data support further clinical investigation of applying elotuzumab or romidepsin in combination with rituximab in AITL containing EBV-positive B-cell proliferations. Disclosures Maciejewski: Novartis: Consultancy; Alexion: Consultancy. Hsi:Abbvie: Research Funding; Eli Lilly: Research Funding; Jazz: Consultancy; Cleveland Clinic&Abbvie Biotherapeutics Inc: Patents & Royalties: US8,603,477 B2.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 465-465
Author(s):  
Jianfei Qian ◽  
Sungyoul Hong ◽  
Liang Zhang ◽  
Yuhuan Zheng ◽  
Haiyan Li ◽  
...  

Abstract Abstract 465 Immunotherapy may complement the current treatments for lymphomas. The lack of suitable shared lymphoma-associated antigens limits its applicability. Therefore, identification and utilization of novel and more potent tumor-associated antigens, particularly those shared among patients, are urgently needed to improve the efficacy of immunotherapy in the diseases. Recent studies have shown that Dickkopf-1 (DKK1), a secreted protein and Wnt signaling pathway inhibitor, is highly expressed by myeloma and other tumor cells, and is absent from normal tissues and organs except placenta and prostate. In the present study we demonstrated that DKK1 is also overexpressed in mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Using DKK1 peptide-pulsed dendritic cells (DCs), we successfully generated HLA-A*0201+ DKK1-specific CTL lines and clones in vitro. These CTLs effectively lysed DKK1+/HLA-A*0201+ lymphoma cell lines Jeko-1 and Granta 519 cells, but not DKK1-/HLA-A*0201+ BJAB, RL and Mino cells nor DKK1+/HLA-A*020- CA46 and Daudi cells. Furthermore, the T-cell clones efficiently killed DKK1+/HLA-A*0201+ primary B-cell lymphoma cells from patients but not lymphoma cells from DKK1–/HLA-A*0201+ patients. HLA-ABC or HLA-A*0201 blocking mAbs significantly inhibited T cell-mediated cytotoxicity against peptide-pulsed T2 cells (P < .01, compared with medium control). No inhibitory effect was observed with mAb against HLA-DR and isotype control IgG. The results indicate that the cytotoxicity was attributed to MHC class I and more specifically, HLA-A*0201-restricted CD8+ CTLs. The CTLs did not kill DKK1–/HLA-A*0201+ DCs, B cells, or PBMCs, These results suggest that the CTLs recognized DKK1 peptides that are naturally processed and presented in the context of HLA-A*0201 molecules on lymphoma cells. To determine the in vivo antitumor activity, NOD-SCID and SCID-hu mice were used for lymphoma cell lines and primary lymphoma cells, respectively. Mice were treated with DKK1-specific CTLs after tumor established in NOD-SCID and SCID-hu mice. Control mice were treated with naïve CD8+ T cells or PBS alone. Tumor burden was measured according to levels of circulating human B2M, and survival rates were determined. Low levels (< 50 ng/ml) of circulating human B2M were detected in group treated DKK1-specific CTLs, while high levels (≥ 150 ng/ml) of circulating human B2M were detected in control mice. In SCID-hu model, X-ray examination showed that established tumors were eradicated in 60% mice treated with DKK1-specific CTLs, while large tumor burdens were found in all control mice. In NOD-SCID model, 40% of mice survived with the treatment of DKK1-specific CTLs. TUNEL assay further confirmed that tumor cells were lysed by DKK1-specific CTLs not naïve CD8+ T cells. These results indicate that DKK1-specific CTLs are able to eradicate established, patient-derived primary B- cell lymphoma in the hosts and adoptive transfer of DKK1-specific CTLs may be used for B-cell lymphoma therapy. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Liang Wang ◽  
Meng Xu ◽  
Chunyan Wang ◽  
Lihua Zhu ◽  
Junyan Hu ◽  
...  

Restricted T-cell receptor (TCR) Vα/Vβrepertoire expression and clonal expansion ofαβT cells especially for putative tumor-associated antigens were observed in patients with hematological malignancies. To further characterize theγδT-cell immune status in B-cell non-Hodgkin lymphoma (B-NHL), we investigated the distribution and clonality of TCR Vγ/Vδrepertoire in peripheral blood (PB), bone marrow (BM), and lymph node (LN) from patients with B-NHL. Four newly diagnosed B-NHL cases, including three with diffuse large B-cell lymphoma (DLBCL) and one with small lymphocytic lymphoma (SLL), were enrolled. The restrictive expression of TCR Vγ/Vδsubfamilies with different distribution patterns could be detected in PB, BM, or LN from all of four patients, and partial subfamily T cells showed clonal proliferation. At least one clonally expanded Vδsubfamily member was found in PB from each patient. However, the expression pattern and clonality of TCR Vγ/Vδchanged in different immune organs and showed individual feature in different patients. The clonally expanded Vδ5, Vδ6, and Vδ8 were detected only in PB but neither in BM nor LN while clonally expanded Vδ2 and Vδ3 could be detected in both PB and BM/LN. In conclusion, the results provide a preliminary profile of distribution and clonality of TCRγ/δsubfamilies T cells in PB, BM, and LN from B-NHL; similar clonally expanded Vδsubfamily T cells in PB and BM may be related to the same B-cell lymphoma-associated antigens, while the different reactive clonally expanded Vγ/VδT cells may be due to local immune response.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Gary Kwok Cheong Lee ◽  
Dorothee Bienzle ◽  
Stefan Matthias Keller ◽  
Mei-Hua Hwang ◽  
Nikos Darzentas ◽  
...  

Abstract Background Lymphocytic neoplasms with frequent reactive lymphocytes are uncommonly reported in dogs, and can pose a diagnostic challenge. Different diagnostic modalities such as cytology, flow cytometry, histopathology, immunohistochemistry, and clonality testing, are sometimes required for a diagnosis. This report illustrates the value of using a multi-modal diagnostic approach to decipher a complex lymphocytic tumor, and introduces immune repertoire sequencing as a diagnostic adjunct. Case presentation A 10-month-old Great Dane was referred for marked ascites. Cytologic analysis of abdominal fluid and hepatic aspirates revealed a mixed lymphocyte population including numerous large lymphocytes, yielding a diagnosis of lymphoma. Flow cytometrically, abdominal fluid lymphocytes were highly positive for CD4, CD5, CD18, CD45, and MHC II, consistent with T cell lymphoma. Due to a rapidly deteriorating clinical condition, the dog was euthanized. Post mortem histologic evaluation showed effacement of the liver by aggregates of B cells surrounded by T cells, suggestive of hepatic T cell-rich large B cell lymphoma. Immune repertoire sequencing confirmed the presence of clonal B cells in the liver but not the abdominal fluid, whereas reactive T cells with shared, polyclonal immune repertoires were found in both locations. Conclusions T cell-rich large B cell lymphoma is a rare neoplasm in dogs that may be challenging to diagnose and classify due to mixed lymphocyte populations. In this case, the results of histopathology, immunohistochemistry and immune repertoire sequencing were most consistent with a hepatic B cell neoplasm and reactive T cells exfoliating into the abdominal fluid. Immune repertoire sequencing was helpful in delineating neoplastic from reactive lymphocytes and characterizing repertoire overlap in both compartments. The potential pitfalls of equating atypical cytomorphology and monotypic marker expression in neoplasia are highlighted.


2018 ◽  
Vol 2 (19) ◽  
pp. 2568-2580 ◽  
Author(s):  
Suparna Dutt ◽  
Michelle B. Atallah ◽  
Yoshitaka Minamida ◽  
Alexander Filatenkov ◽  
Kent P. Jensen ◽  
...  

Abstract Conventional local tumor irradiation (LTI), delivered in small daily doses over several weeks, is used clinically as a palliative, rather than curative, treatment for chemotherapy-resistant diffuse large B-cell lymphoma (DLBCL) for patients who are ineligible for hematopoietic cell transplantation. Our goal was to test the hypothesis that accelerated, but not conventional, LTI would be more curative by inducing T cell–mediated durable remissions. We irradiated subcutaneous A20 and BL3750 lymphoma tumors in mice with a clinically relevant total radiation dose of 30 Gy LTI, delivered in 10 doses of 3 Gy over 4 days (accelerated irradiation) or as 10 doses of 3 Gy over 12 days (conventional irradiation). Compared with conventional LTI, accelerated LTI resulted in more complete and durable tumor remissions. The majority of these mice were resistant to rechallenge with lymphoma cells, demonstrating the induction of memory antitumor immunity. The increased efficacy of accelerated LTI correlated with higher levels of tumor cell necrosis vs apoptosis and expression of “immunogenic cell death” markers, including calreticulin, heat shock protein 70 (Hsp70), and Hsp90. Accelerated LTI–induced remissions were not seen in immunodeficient Rag-2−/− mice, CD8+ T-cell–depleted mice, or Batf-3−/− mice lacking CD8α+ and CD103+ dendritic cells. Accelerated, but not conventional, LTI in immunocompetent hosts induced marked increases in tumor-infiltrating CD4+ and CD8+ T cells and MHCII+CD103+CD11c+ dendritic cells and corresponding reductions in exhausted PD-1+Eomes+CD8+ T cells and CD4+CD25+FOXP3+ regulatory T cells. These findings raise the possibility that accelerated LTI can provide effective immune control of human DLBCL.


Sign in / Sign up

Export Citation Format

Share Document