Thrombospondin 1 as a scavenger for matrix-associated fibroblast growth factor 2

Blood ◽  
2003 ◽  
Vol 102 (13) ◽  
pp. 4399-4406 ◽  
Author(s):  
Barbara Margosio ◽  
Daniela Marchetti ◽  
Veronica Vergani ◽  
Raffaella Giavazzi ◽  
Marco Rusnati ◽  
...  

AbstractThe antiangiogenic factor thrombospondin 1 (TSP-1) binds with high affinity to several heparin-binding angiogenic factors, including fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF), and hepatocyte growth factor/scatter factor (HGF/SF). The aim of this study was to investigate whether TSP-1 affects FGF-2 association with the extracellular matrix (ECM) and its bioavailability. TSP-1 prevented the binding of free FGF-2 to endothelial cell ECM. It also promoted the mobilization of matrix-bound FGF-2, generating a TSP-1/FGF-2 complex. The region of TSP-1 responsible for these activities was located within the 140-kDa antiangiogenic and FGF-2 binding fragment, whereas the 25-kDa heparin-binding fragment was inactive. Matrix-released FGF-2/TSP-1 complex had a reduced ability to bind to and induce proliferation of endothelial cells. TSP-1 depleted the ECM laid by FGF-2-overproducing tumor cells of its FGF-2-dependent mitogenic activity for endothelial cells. Besides FGF-2, TSP-1 also inhibited VEGF and HGF/SF binding to the ECM and mobilized them from the ECM. Our study shows that TSP-1 acts as a scavenger for matrix-associated angiogenic factors, affecting their location, bioavailability, and function. (Blood. 2003; 102:4399-4406)

2020 ◽  
Vol 21 (10) ◽  
pp. 3698 ◽  
Author(s):  
Takato Hara ◽  
Shiori Yabushita ◽  
Chika Yamamoto ◽  
Toshiyuki Kaji

Syndecan-4 is a member of the syndecan family of transmembrane heparan sulfate proteoglycans, and is involved in cell protection, proliferation, and the blood coagulation-fibrinolytic system in vascular endothelial cells. Heparan sulfate chains enable fibroblast growth factor-2 (FGF-2) to form a complex with its receptor and to transduce the cell growth signal. In the present study, bovine aortic endothelial cells were cultured, and the intracellular signal pathways that mediate the regulation of syndecan-4 expression in dense and sparse cultures by FGF-2 were analyzed. We demonstrated the cell density-dependent differential regulation of syndecan-4 expression. Specifically, we found that FGF-2 upregulated the synthesis of syndecan-4 in vascular endothelial cells via the MEK1/2-ERK1/2 pathway in dense cell cultures, with only a transcriptional induction of syndecan-4 at a low cell density via the Akt pathway. This study highlights a critical mechanism underlying the regulation of endothelial cell functions by proteoglycans.


Sign in / Sign up

Export Citation Format

Share Document