Quiescent phenotype of tumor-specific CD8+ T cells following immunization

Blood ◽  
2004 ◽  
Vol 104 (7) ◽  
pp. 1970-1978 ◽  
Author(s):  
Vladia Monsurrò ◽  
Ena Wang ◽  
Yoshisha Yamano ◽  
Stephen A. Migueles ◽  
Monica C. Panelli ◽  
...  

Abstract In a human melanoma model of tumor antigen (TA)–based immunization, we tested the functional status of TA-specific CD8+ cytotoxic T lymphocytes. A “quiescent” phenotype lacking direct ex vivo cytotoxic and proliferative potential was identified that was further characterized by comparing its transcriptional profile to that of TA-specific T cells sensitized in vitro by exposure to the same TA and the T-cell growth factor interleukin 2 (IL-2). Quiescent circulating tumor-specific CD8+ T cells were deficient in expression of genes associated with T-cell activation, proliferation, and effector function. This quiescent status may explain the observed lack of correlation between the presence of circulating immunization-induced lymphocytes and tumor regression. In addition, the activation of TA-specific T cells by in vitro antigen recall and IL-2 suggests that a complete effector phenotype might be reinstated in vivo to fulfill the potential of anticancer vaccine protocols.

2021 ◽  
Vol 12 ◽  
Author(s):  
Alana MacDonald ◽  
Brandon Lam ◽  
John Lin ◽  
Louise Ferrall ◽  
Yu Jui Kung ◽  
...  

The phospholipid phosphatidylserine (PS) is naturally maintained on the cytoplasmic side of the plasma membrane. Independent of apoptosis, PS is redistributed to the surface of CD8 T cells in response to TCR-mediated activation. Annexin V (AnnV) is a protein known to bind PS with high affinity and has been effectively utilized to anchor antigen to the surface of CD8 T cells. To expand these studies, we aimed to exploit TCR activation driven PS exposure as a target to deliver cytokine, namely interleukin-2 (IL-2), to the surface of CD8 T cells. This was accomplished using a novel chimeric fusion protein of annexin V and interleukin 2 (AnnV-IL2). In vitro analysis revealed that AnnV-IL2 is able to specifically bind PS on the T cell surface following TCR stimulation. Consequently, AnnV-IL2 proved to be significantly more effective at enhancing T cell activation compared to recombinant IL-2. In vivo, AnnV-IL2 promotes robust expansion of antigen-specific cells capable of interferon gamma (IFNγ) production when administered following peptide vaccination. Importantly, upon antigen rechallenge, AnnV-IL2 treatment mice demonstrated a stronger secondary expansion, indicating durability of AnnV-IL2 mediated responses. Our data supports the use of AnnV-IL2 to modulate antigen-specific T cell immunity and demonstrates that the PS-AnnV axis is a feasible mechanism to target diverse cargo to CD8 T cells.


Blood ◽  
2021 ◽  
Author(s):  
Muzaffar H Qazilbash ◽  
Neeraj Y Saini ◽  
Cha Soung-chul ◽  
Zhe Wang ◽  
Edward Stadtmauer ◽  
...  

We hypothesized that combining adoptively transferred autologous T cells with a cancer vaccine strategy would enhance therapeutic efficacy by adding anti-myeloma idiotype-keyhole limpet hemocyanin (Id-KLH) vaccine to vaccine-specific co-stimulated T cells. In this randomized, phase II trial, eligible patients received either the control (KLH only) or Id-KLH vaccine, an auto-transplant, vaccine-specific co-stimulated T-cells expanded ex-vivo, and two booster doses of the assigned vaccine. In 36 patients (20 in KLH, 16 in Id-KLH) enrolled, no dose-limiting toxicity was seen in either arm. At last evaluation, 6 (30%) and 8 (50%) had achieved complete remission in KLH-only and Id-KLH, respectively (p=0.22) and no difference in 3-year progression-free survival was observed (59% and 56%, respectively; p=0.32). In a 594 Nanostring nCounter gene panel analyzed for immune reconstitution (IR), compared with KLH-only patients, there was a greater change in IR genes in T-cells in Id-KLH patients relative to baseline. Specifically, upregulation of genes associated with activation, induction of effector function, and generation of memory CD8+ T cells after Id-KLH, but not after KLH control vaccination, was observed. Similarly, responding patients across both arms were associated with upregulation of genes associated with T-cell activation. At baseline, all patients had greater expression of CD8+ T-cell exhaustion markers. These changes were associated with functional Id-specific immune responses in a subset of Id-KLH patients analyzed. In conclusion, in this combination immunotherapy approach, we observed a significantly more robust IR in CD4+ and CD8+ T cells in the Id-KLH arm, supporting further investigation of vaccine and adoptive immunotherapy strategies.


2006 ◽  
Vol 74 (7) ◽  
pp. 3817-3824 ◽  
Author(s):  
Karen L. Wozniak ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT Dendritic cells (DC) have been shown to phagocytose and kill Cryptococcus neoformans in vitro and are believed to be important for inducing protective immunity against this organism. Exposure to C. neoformans occurs mainly by inhalation, and in this study we examined the in vivo interactions of C. neoformans with DC in the lung. Fluorescently labeled live C. neoformans and heat-killed C. neoformans were administered intranasally to C57BL/6 mice. At specific times postinoculation, mice were sacrificed, and lungs were removed. Single-cell suspensions of lung cells were prepared, stained, and analyzed by microscopy and flow cytometry. Within 2 h postinoculation, fluorescently labeled C. neoformans had been internalized by DC, macrophages, and neutrophils in the mouse lung. Additionally, lung DC from mice infected for 7 days showed increased expression of the maturation markers CD80, CD86, and major histocompatibility complex class II. Finally, ex vivo incubation of lung DC from infected mice with Cryptococcus-specific T cells resulted in increased interleukin-2 production compared to the production by DC from naïve mice, suggesting that there was antigen-specific T-cell activation. This study demonstrated that DC in the lung are capable of phagocytosing Cryptococcus in vivo and presenting antigen to C. neoformans-specific T cells ex vivo, suggesting that these cells have roles in innate and adaptive pulmonary defenses against cryptococcosis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Marie-Line Puiffe ◽  
Aurélie Dupont ◽  
Nouhoum Sako ◽  
Jérôme Gatineau ◽  
José L. Cohen ◽  
...  

IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.


2010 ◽  
Vol 207 (8) ◽  
pp. 1791-1804 ◽  
Author(s):  
Elizabeth D. Thompson ◽  
Hilda L. Enriquez ◽  
Yang-Xin Fu ◽  
Victor H. Engelhard

Studies of T cell responses to tumors have focused on the draining lymph node (LN) as the site of activation. We examined the tumor mass as a potential site of activation after adoptive transfer of naive tumor-specific CD8 T cells. Activated CD8 T cells were present in tumors within 24 h of adoptive transfer and proliferation of these cells was also evident 4–5 d later in mice treated with FTY720 to prevent infiltration of cells activated in LNs. To confirm that activation of these T cells occurred in the tumor and not the tumor-draining LNs, we used mice lacking LNs. Activated and proliferating tumor-infiltrating lymphocytes were evident in these mice 24 h and 4 d after naive cell transfer. T cells activated within tumors acquired effector function that was evident both ex vivo and in vivo. Both cross-presenting antigen presenting cells within the tumor and tumor cells directly presenting antigen activated these functional CD8 effectors. We conclude that tumors support the infiltration, activation, and effector differentiation of naive CD8 T cells, despite the presence of immunosuppressive mechanisms. Thus, targeting of T cell activation to tumors may present a tool in the development of cancer immunotherapy.


2021 ◽  
Author(s):  
Rabiah Fardoos ◽  
Sarah K. Nyquist ◽  
Osaretin E. Asowata ◽  
Samuel W. Kazer ◽  
Alveera Singh ◽  
...  

Lymphoid tissues are an important HIV reservoir site that persists in the face of antiretroviral therapy and natural immunity. Targeting these reservoirs by harnessing the antiviral activity of local tissue resident memory (TRM) CD8+ T-cells is of great interest, but limited data exist on TRMs within lymph nodes of people living with HIV (PLWH). Here, we studied tonsil CD8+ T-cells obtained from PLWH and uninfected controls from South Africa. We show that these cells are preferentially located outside the germinal centers (GCs), the main reservoir site for HIV, and display a low cytolytic and transcriptionally TRM-like profile that is distinct from blood. In PLWH, CD8+ TRM-like cells are highly expanded and adopt a more cytolytic, activated and exhausted phenotype characterized by increased expression of CD69, PD-1 and perforin, but reduced CD127. This phenotype was enhanced in HIV-specific CD8+ T-cells from tonsils compared to matched blood. Single-cell profiling of these cells revealed a clear transcriptional signature of T-cell activation, clonal expansion and exhaustion ex-vivo. In contrast, this signature was absent from HIV-specific CD8+ T-cells in tonsils isolated from a natural HIV controller, who expressed lower levels of cell surface PD-1 and CXCR5, and reduced transcriptional evidence of T-cell activation, exhaustion and cytolytic activity. Thus, we show that HIV-specific TRM-like CD8+ T-cells in tonsils from non-HIV controllers are enriched for activation and exhaustion profiles compared to those in blood, suggesting that lymphoid HIV specific CD8+ TRM cells are potentially ideal candidates for immunotherapy to modulate their ability to targeting the HIV reservoirs.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A533-A533
Author(s):  
Faizah Alotaibi ◽  
Mark Vincent ◽  
Weiping Min ◽  
James Koropatnick

BackgroundCD5, a member of the scavenger receptor cysteine-rich superfamily, is a marker for T cells and a subset of B cells (B1a). CD5 associates with T-cell and B-cell receptors and impair TCR signaling1 2 and increased CD5 is an indication of B cell activation. Furthermore, CD5 levels on CD8+ T cell splenocytes were significantly increased after TCR/CD3 stimulation using ex vivo treatment with anti-CD3/anti-CD28 MAbs compared to non-stimulated CD8+ T splenocytes.3 Previous studies have shown a correlation between CD5 and anti-tumour immunity where CD5 knockout mice inoculated with B16F10 melanoma cells had delayed tumour growth compared to wild type mice.4 In tumour-infiltrating lymphocytes (TILs) isolated from lung cancer patients, CD5 levels were negatively correlated with anti-tumour activity and tumour-mediated activation-induced T cell death,5 suggesting that CD5 could impair activation of anti-tumour T cells. However, the correlation between CD5 level expression and T cell activation and exhaustion in the tumour microenvironment and in peripheral organs is ill-defined and requires further investigation.MethodsWe determined CD5 levels in T cell subsets in different organs in mice bearing syngeneic 4T1 breast tumour homografts and assessed the relationship between CD5 and increased CD69 and PD-1 (markers of T cell activation and exhaustion) by flow cytometry.ResultsWe report that T cell CD5 levels were higher in CD4+ T cells than in CD8+ T cells in 4T1 tumour-bearing mice, and that high CD5 levels on CD4+ T cells were maintained in peripheral organs (spleen and lymph nodes). However, both CD4+ and CD8+ T cells recruited to tumours had reduced CD5 compared to CD4+ and CD8+ T cells in peripheral organs. In addition, CD5highCD4+ T cells and CD5highCD8+ T cells from peripheral organs exhibited higher levels of activation and associated exhaustion compared to CD5lowCD4+ T cell and CD5lowCD8+ T cell from the same organs. Interestingly, CD8+ T cells among TILs and downregulated CD5 were activated to a higher level, with concomitantly increased exhaustion markers, than CD8+CD5+ TILs.ConclusionsThus, differential CD5 levels among T cells in tumours and lymphoid organs can be associated with different levels of T cell activation and exhaustion, suggesting that CD5 may be a therapeutic target for immunotherapeutic activation in cancer therapy.AcknowledgementsThe author thanks Rene Figueredo and Ronak Zareardalan for their assistance in animal workEthics ApprovalThis study was approved by the Animal Use Subcommittee of the University of Western OntarioReferencesAzzam HS, et al., Fine tuning of TCR signaling by CD5. The Journal of Immunology 2001. 166(9): p. 5464–5472.Voisinne GA, Gonzalez de Peredo and Roncagalli R. CD5, an undercover regulator of TCR signaling. Frontiers in Immunology 2018;9:p. 2900.Alotaibi, F., et al., CD5 blockade enhances ex vivo CD8+ T cell activation and tumour cell cytotoxicity. European journal of immunology 2020;50(5): p. 695–704.Tabbekh, M., et al., Rescue of tumor-infiltrating lymphocytes from activation-induced cell death enhances the antitumor CTL response in CD5-deficient mice. The Journal of Immunology, 2011. 187(1): p. 102–109.Dorothée, G., et al., In situ sensory adaptation of tumor-infiltrating T lymphocytes to peptide-MHC levels elicits strong antitumor reactivity. The Journal of Immunology 2005;174(11): p. 6888–6897.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 785-793 ◽  
Author(s):  
Ronald T. Mitsuyasu ◽  
Peter A. Anton ◽  
Steven G. Deeks ◽  
David T. Scadden ◽  
Elizabeth Connick ◽  
...  

Abstract We have genetically engineered CD4+ and CD8+ T cells with human immunodeficiency virus (HIV) specificity by inserting a gene, CD4ζ, containing the extracellular domain of human CD4 (which binds HIV env) linked to the zeta (ζ) chain of the T-cell receptor (which mediates T-cell activation). Twenty-four HIV-positive subjects received a single infusion of 2 to 3 × 1010 autologous CD4ζ-modified CD4+and CD8+ T cells administered with (n = 11) or without (n = 13) interleukin-2 (IL-2). Subjects had CD4 counts greater than 50/μL and viral loads of at least 1000 copies/mL at entry. T cells were costimulated ex vivo through CD3 and CD28 and expanded for approximately 2 weeks. CD4ζ was detected in 1% to 3% of blood mononuclear cells at 8 weeks and 0.1% at 1 year after infusion, and survival was not enhanced by IL-2. Trafficking of gene-modified T cells to bulk rectal tissue and/or isolated lamina propria lymphocytes was documented in a subset of 5 of 5 patients at 14 days and 2 of 3 at 1 year. A greater than 0.5 log mean decrease in rectal tissue–associated HIV RNA was observed for at least 14 days, suggesting compartmental antiviral activity of CD4ζ T cells. CD4+ counts increased by 73/μL at 8 weeks in the group receiving IL-2. There was no significant mean change in plasma HIV RNA or blood proviral DNA in either treatment arm. This sustained, high-level persistence of gene-modified T cells demonstrates the feasibility of ex vivo T-cell gene therapy in HIV-infected adults and suggests the importance of providing HIV-specific T-helper function.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2824-2824 ◽  
Author(s):  
François Gaudet ◽  
Jennifer F Nemeth ◽  
Ronan McDaid ◽  
Yingzhe Li ◽  
Benjamin Harman ◽  
...  

Abstract AML is a cancer of the myeloid lineage that is characterized by the accumulation of abnormal white blood cells in the bone marrow and blood. Existing therapies do not lead to cures, partially due to their inability to eliminate residual leukemic stem cells (LSCs) in the bone marrow. T-cell redirection has been shown to be an effective method of treatment for hematologic malignancies (eg, blinatumomab) and represents an attractive approach to treat AML. CD123 (α-chain of the interleukin-3 receptor) has been shown to be expressed on the surface of AML blasts and LSCs. To eradicate CD123+ cells, we developed a bispecific antibody (JNJ-63709178) using the Genmab DuoBody® technology that can bind both CD123 on tumor cells and CD3 on T cells. JNJ-63709178 is a humanized IgG4 bispecific antibody with silenced Fc function. This antibody is able to recruit T cells to CD123-expressing tumor cells and induce the killing of these tumor cells in vitro (MOLM-13, OCI-AML5 and KG-1; EC50 = 0.51-0.91 nM). In contrast, this antibody does not kill CD123- cell lines, demonstrating the specificity of cytotoxicity. Consistently, the degree of cell killing correlated with the level of T-cell activation (CD69 and CD25) and cytokine release (TGF-β and TNF-α). Control bispecific antibodies containing a null arm (viral epitope) paired with a CD123 arm (CD123xnull) or a CD3 arm (nullxCD3) did not induce cytotoxicity or T-cell activation in the assays tested. JNJ-63709178 had no effect on T-cell activation when incubated with T cells alone. In AML murine xenograft models, JNJ-63709178 was able to suppress tumor growth and induce tumor regression (MOLM-13 and KG-1, respectively) in the presence of human peripheral blood mononuclear cells (PBMCs) or T cells. Tumor regression correlated with the infiltration of T cells in the tumor and the expression of T-cell activation markers such as CD25, PD1 and TIM3. Furthermore, this antibody was able to induce the killing of primary CD123+ cancer cells from the blood of patients with AML without the need to supplement with fresh T cells (EC50 = 0.83 nM). These results indicate that JNJ-63709178 can potently and specifically kill CD123+ cancer cells in vitro, in vivo and ex vivo. Pharmacokinetic studies in cynomolgus monkeys support twice weekly dosing for human studies. JNJ-63709178 is currently being investigated in a Phase 1 clinical trial in relapsed and refractory AML (ClinicalTrials.gov ID: NCT02715011). Disclosures Gaudet: Janssen Pharmaceuticals R&D: Employment, Other: Stock options, Patents & Royalties: pending, not yet issued. Nemeth:Janssen Pharmaceuticals R&D: Employment, Other: stock, Patents & Royalties: patent pending. McDaid:Janssen Pharmaceuticals Research and Development: Employment. Li:Janssen: Employment. Harman:Janssen Pharmaceuticals R&D: Employment. Millar:Janssen Pharmaceuticals R&D: Employment, Other: stock options. Teplyakov:Janssen Pharmaceuticals R&D: Employment. Wheeler:Janssen Pharmaceuticals R&D: Employment. Luo:Janssen Pharmaceuticals R&D: Employment. Tam:Janssen Pharmaceuticals R&D: Employment, Other: stocks, Research Funding. Wu:Janssen Pharmaceuticals R&D: Employment. Chen:Janssen Pharmaceuticals R&D: Employment. Rudnick:Janssen Pharmaceuticals R&D: Employment. Chu:Janssen Pharmaceuticals R&D: Employment. Hughes:Janssen Pharmaceuticals R&D: Employment. Luistro:Janssen: Employment. Chin:Janssen: Employment. Babich:Janssen: Employment. Kalota:Janssen Pharmaceuticals R&D: Employment, Other: stock. Singh:Janssen Pharmaceuticals R&D: Employment, Other: stock options. Salvati:Janssen Pharmaceuticals R&D: Employment, Other: stock options, Patents & Royalties: patent. Elsayed:Janssen: Employment, Other: stock options. Attar:Janssen: Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1702-1702
Author(s):  
Sterling Eckard ◽  
Bianca Rojo ◽  
Victoria Smith ◽  
Patrick Chun

Abstract Background Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive tumor environment and are a barrier to immune therapeutic approaches, including cell-based therapies such as chimeric antigen receptor T cells (CAR T). Despite good overall response rates with certain subsets of B cell leukemias and lymphomas, a significant percentage of patients treated with CAR T therapy do not respond or subsequently relapse. Poor CAR T expansion, poor persistence of infused cells, and clinical treatment failure are associated with tumor and systemic immune dysregulation including high blood levels of peripheral blood monocytic MDSC (M-MDSCs) and interleukin-6, both of which are associated with lack of durable responses 1. In addition, CAR T therapy has been limited by the occurrence of severe cytokine release syndrome (CRS), which is associated with high IL-6 production 2 by myeloid cells such as MDSC. AMV564 is a potent T cell engager that selectively depletes MDSC while promoting T cell activation and proliferation without significant IL-6 induction 3. In phase 1 studies in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and solid tumors, AMV564 has been demonstrated to be clinically safe and active with some patients achieving complete remissions. Methods Cell lines, primary human cells, and patient samples were analyzed using flow cytometry with appropriate marker panels. T cell activation and cytotoxicity assays were conducted using primary human T cells from healthy donors and target cells (3:1 ratio) for 72 hours. T cell activation using ImmunoCult Human CD3/CD28 served as an assay reference. Results Analysis of patients treated with AMV564 demonstrated statistically significant selective depletion of M-MDSC by cycle 2 (Fig. 1A). While on AMV564 therapy, median IL-6 levels remained below 100 pg/mL despite robust T cell activation and expansion. Granzyme B production by CD8 T cells increased significantly between Cycle 1 and Cycle 2 in patients on therapy, and effector CD8 T cells expand over the course of treatment (Fig. 1B-C). These data collectively support the finding that AMV564 both removes a key source of immune suppression and is a potent agonist of T cell function and differentiation in patients. AMV564 potently activates and expands primary T cells ex vivo. Across donors, peak proliferation was significantly higher with AMV564 than with the CD3/CD28 reference (Fig. 2A). Importantly, T cell viability remained significantly higher with AMV564 when compared to reference control (CD3/CD28), and there was no evidence of activation-induced cell death (AICD) in AMV564-treated samples (Fig. 2B). Conclusions AMV564 depletes MDSC and stimulates expansion and longevity of T cells without significant IL-6 induction, suggesting a possible strategy for improvement in efficacy of cell-based therapy such as CAR T approaches. As circulating M-MDSC both at baseline and after CAR T infusion correlate with poor clinical efficacy 4, AMV564 may have beneficial effects during the conditioning phase of cell therapy, after re-infusion of CAR T products into patients, or both. Ex vivo studies using donor T cells and ongoing in vitro studies using CAR T molecules suggest that AMV564 may provide dual benefit with respect to both depletion of MDSC and T cell agonism. References 1. Jain, et al; Blood 2021; 137 (19): 2621-2633. doi: https://doi.org/10.1182/blood.2020007445 2. Li et al., Sci. Transl. Med. 11, eaax8861 (2019) 3. Eckard et al; Cancer Res 2021; (81) (13 Supplement) 528; DOI: 10.1158/1538-7445.AM2021-528 4. Jain, et al; Blood 2019; 134 (Supplement_1): 2885. doi: https://doi.org/10.1182/blood-2019-131041 Figure 1 Figure 1. Disclosures Eckard: Amphivena Therapeutics: Current Employment. Rojo: Amphivena Therapeutics: Current Employment. Smith: Amphivena Therapeutics: Current Employment. Chun: Amphivena Therapeutics: Current Employment.


Sign in / Sign up

Export Citation Format

Share Document