Prevention of lethal acute GVHD with an agonistic CD28 antibody and rapamycin

Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1355-1361 ◽  
Author(s):  
Michael H. Albert ◽  
Xue-Zhong Yu ◽  
Paul J. Martin ◽  
Claudio Anasetti

AbstractSuccessful hematopoietic cell transplantation (HCT) from an allogeneic donor ideally should produce tolerance to recipient alloantigens while preserving anti-infectious and antitumor immunity. Rapamycin together with costimulation blockade can induce tolerance in organ allograft models by inhibiting G1 → S-phase progression and promoting T-cell apoptosis. In contrast to blocking costimulation through CD28, administration of agonistic CD28-specific antibody 37.51 partially prevents lethal graft-versus-host disease (GVHD) by selective depletion of alloreactive T cells in mice. We hypothesized that combining rapamycin with agonistic CD28 treatment would improve GVHD control by tolerizing a small subset of alloreactive T cells that might escape effects of the CD28-specific antibody. A short course of rapamycin plus agonistic CD28 treatment showed synergism at suboptimal doses, was highly effective in preventing lethal GVHD, and was superior to rapamycin plus CD28 blockade in a major histocompatibility complex class I– and II–mismatched HCT model. The combination treatment reduced the number of proliferating, alloreactive cells in the recipient, promoted donor B- and T-cell reconstitution, and reduced inflammatory cytokine levels. Administration of rapamycin plus agonistic CD28 antibodies offers a promising new therapeutic approach to facilitate tolerance after HCT.

Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3832-3839 ◽  
Author(s):  
Ming-Tseh Lin ◽  
Li-Hui Tseng ◽  
Haydar Frangoul ◽  
Ted Gooley ◽  
Ji Pei ◽  
...  

Lymphopenia and immune deficiency are significant problems following allogeneic hematopoietic cell transplantation (HCT). It is largely assumed that delayed immune reconstruction is due to a profound decrease in thymus-dependent lymphopoiesis, especially in older patients, but apoptosis is also known to play a significant role in lymphocyte homeostasis. Peripheral T cells from patients who received HCT were studied for evidence of increased cell death. Spontaneous apoptosis was measured in CD3+ T cells following a 24-hour incubation using 7-amino-actinomycin D in conjunction with the dual staining of cell surface antigens. Apoptosis was significantly greater among CD3+ T cells taken from patients 19-23 days after transplantation (30.4% ± 12.5%,P < .05), and 1 year after transplantation (9.7% ± 2.8%, P < .05) compared with healthy controls (4.0% ± 1.5%). Increased apoptosis occurred preferentially in HLA (human leukocyte antigen)-DR positive cells and in both CD3+/CD4+ and CD3+/CD8+ T-cell subsets, while CD56+/CD3− natural killer cells were relatively resistant to apoptosis. The extent of CD4+T-cell apoptosis was greater in patients with grade II-IV acute graft-versus-host disease (GVHD) (33.9% ± 11.3%) compared with grade 0-I GVHD (14.6 ± 6.5%, P < .05). T-cell apoptosis was also greater in patients who received transplantations from HLA-mismatched donors (39.5% ± 10.4%,P < .05) or HLA-matched unrelated donors (32.1% ± 11.4%, P < .05) compared with patients who received transplantations from HLA-identical siblings (19.6% ± 6.7%). The intensity of apoptosis among CD4+ T cells was significantly correlated with a lower CD4+ T-cell count. Together, these observations suggest that activation of T cells in vivo, presumably by alloantigens, predisposes the cells to spontaneous apoptosis, and this phenomenon is associated with lymphopenia. Activation-induced T-cell apoptosis may contribute to delayed immune reconstitution following HCT.


2020 ◽  
Vol 222 (6) ◽  
pp. 1051-1061
Author(s):  
Jing-sheng Lou ◽  
Jia-feng Wang ◽  
Miao-miao Fei ◽  
Yan Zhang ◽  
Jun Wang ◽  
...  

Abstract Background Lymphocyte activation gene 3 (LAG-3) is one of the immune checkpoint molecules, negatively regulating the T-cell reactions. The present study investigated the role of LAG-3 in sepsis-induced T-lymphocyte disability. Methods Mice sepsis was induced by cecal ligation and puncture (CLP). LAG-3 expression on some immune cells were detected 24 hours after CLP. LAG-3 knockout and anti–LAG-3 antibody were applied to investigate the effects on the survival, bacterial clearance. Cytokine levels, T-cell counts, and the presence of apoptosis (in blood, spleen, and thymus) were also determined. In vitro T-cell apoptosis, interferon γ secretion, and proliferation were measured. The expression of interleukin 2 receptor on T cells was also determined after CLP. Results LAG-3 was up-regulated on CD4+/CD8+ T, CD19+ B, natural killer, CD4+CD25+ regulatory T cells and dendritic cells. Both LAG-3 knockout and anti–LAG-3 antibody had a positive effect on survival and on blood or peritoneal bacterial clearance in mice undergoing CLP. Cytokine levels and T-cell apoptosis decreased in anti–LAG-3 antibody–treated mice. Induced T-cell apoptosis decreased, whereas interferon γ secretion and proliferation were improved by anti–LAG-3 antibody in vitro. Interleukin 2 receptor was up-regulated on T cells in both wild-type and LAG-3–knockout mice undergoing CLP. Conclusions LAG-3 knockout or anti–LAG-3 antibody blockade protected mice undergoing CLP from sepsis-associated immunodysfunction and may be a new target for the treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Megan S. Molina ◽  
Emely A. Hoffman ◽  
Jessica Stokes ◽  
Nicole Kummet ◽  
Kyle A. Smith ◽  
...  

The growth factor Flt3 ligand (Flt3L) is central to dendritic cell (DC) homeostasis and development, controlling survival and expansion by binding to Flt3 receptor tyrosine kinase on the surface of DCs. In the context of hematopoietic cell transplantation, Flt3L has been found to suppress graft-versus-host disease (GvHD), specifically via host DCs. We previously reported that the pre-transplant conditioning regimen consisting of bendamustine (BEN) and total body irradiation (TBI) results in significantly reduced GvHD compared to cyclophosphamide (CY)+TBI. Pre-transplant BEN+TBI conditioning was also associated with greater Flt3 expression among host DCs and an accumulation of pre-cDC1s. Here, we demonstrate that exposure to BEN increases Flt3 expression on both murine bone marrow-derived DCs (BMDCs) and human monocyte-derived DCs (moDCs). BEN favors development of murine plasmacytoid DCs, pre-cDC1s, and cDC2s. While humans do not have an identifiable equivalent to murine pre-cDC1s, exposure to BEN resulted in decreased plasmacytoid DCs and increased cDC2s. BEN exposure and heightened Flt3 signaling are associated with a distinct regulatory phenotype, with increased PD-L1 expression and decreased ICOS-L expression. BMDCs exposed to BEN exhibit diminished pro-inflammatory cytokine response to LPS and induce robust proliferation of alloreactive T-cells. These proliferative alloreactive T-cells expressed greater levels of PD-1 and underwent increased programmed cell death as the concentration of BEN exposure increased. Alloreactive CD4+ T-cell death may be attributable to pre-cDC1s and provides a potential mechanism by which BEN+TBI conditioning limits GvHD and yields T-cells tolerant to host antigen.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3832-3839 ◽  
Author(s):  
Ming-Tseh Lin ◽  
Li-Hui Tseng ◽  
Haydar Frangoul ◽  
Ted Gooley ◽  
Ji Pei ◽  
...  

Abstract Lymphopenia and immune deficiency are significant problems following allogeneic hematopoietic cell transplantation (HCT). It is largely assumed that delayed immune reconstruction is due to a profound decrease in thymus-dependent lymphopoiesis, especially in older patients, but apoptosis is also known to play a significant role in lymphocyte homeostasis. Peripheral T cells from patients who received HCT were studied for evidence of increased cell death. Spontaneous apoptosis was measured in CD3+ T cells following a 24-hour incubation using 7-amino-actinomycin D in conjunction with the dual staining of cell surface antigens. Apoptosis was significantly greater among CD3+ T cells taken from patients 19-23 days after transplantation (30.4% ± 12.5%,P &lt; .05), and 1 year after transplantation (9.7% ± 2.8%, P &lt; .05) compared with healthy controls (4.0% ± 1.5%). Increased apoptosis occurred preferentially in HLA (human leukocyte antigen)-DR positive cells and in both CD3+/CD4+ and CD3+/CD8+ T-cell subsets, while CD56+/CD3− natural killer cells were relatively resistant to apoptosis. The extent of CD4+T-cell apoptosis was greater in patients with grade II-IV acute graft-versus-host disease (GVHD) (33.9% ± 11.3%) compared with grade 0-I GVHD (14.6 ± 6.5%, P &lt; .05). T-cell apoptosis was also greater in patients who received transplantations from HLA-mismatched donors (39.5% ± 10.4%,P &lt; .05) or HLA-matched unrelated donors (32.1% ± 11.4%, P &lt; .05) compared with patients who received transplantations from HLA-identical siblings (19.6% ± 6.7%). The intensity of apoptosis among CD4+ T cells was significantly correlated with a lower CD4+ T-cell count. Together, these observations suggest that activation of T cells in vivo, presumably by alloantigens, predisposes the cells to spontaneous apoptosis, and this phenomenon is associated with lymphopenia. Activation-induced T-cell apoptosis may contribute to delayed immune reconstitution following HCT.


2018 ◽  
Vol 93 (3) ◽  
Author(s):  
Abena K. R. Kwaa ◽  
Chloe A. G. Talana ◽  
Joel N. Blankson

ABSTRACTCurrent shock-and-kill strategies for the eradication of the HIV-1 reservoir have resulted in blips of viremia but not in a decrease in the size of the latent reservoir in patients on suppressive antiretroviral therapy (ART). This discrepancy could potentially be explained by an inability of the immune system to kill HIV-1-infected cells following the reversal of latency. Furthermore, some studies have suggested that certain latency-reversing agents (LRAs) may inhibit CD8+T cell and natural killer (NK) cell responses. In this study, we tested the hypothesis that alpha interferon (IFN-α) could improve the function of NK cells from chronic progressors (CP) on ART. We show here that IFN-α treatment enhanced cytokine secretion, polyfunctionality, degranulation, and the cytotoxic potential of NK cells from healthy donors (HD) and CP. We also show that this cytokine enhanced the viral suppressive capacity of NK cells from HD and elite controllers or suppressors. Furthermore, IFN-α enhanced global CP CD8+T cell cytokine responses and the suppressive capacity of ES CD8+T cells. Our data suggest that IFN-α treatment may potentially be used as an immunomodulatory agent in HIV-1 cure strategies.IMPORTANCEData suggest that HIV+individuals unable to control infection fail to do so due to impaired cytokine production and/cytotoxic effector cell function. Consequently, the success of cure agendas such as the shock-and-kill strategy will probably depend on enhancing patient effector cell function. In this regard, NK cells are of particular interest since they complement the function of CD8+T cells. Here, we demonstrate the ability of short-course alpha interferon (IFN-α) treatments to effectively enhance such effector functions in chronic progressor NK cells without inhibiting their general CD8+T cell function. These results point to the possibility of exploring such short-course IFN-α treatments for the enhancement of effector cell function in HIV+patients in future cure strategies.


2000 ◽  
Vol 191 (5) ◽  
pp. 805-812 ◽  
Author(s):  
Reinhard Obst ◽  
Nikolai Netuschil ◽  
Karsten Klopfer ◽  
Stefan Stevanović ◽  
Hans-Georg Rammensee

By analyzing T cell responses against foreign major histocompatibility complex (MHC) molecules loaded with peptide libraries and defined self- and viral peptides, we demonstrate a profound influence of self-MHC molecules on the repertoire of alloreactive T cells: the closer the foreign MHC molecule is related to the T cell's MHC, the higher is the proportion of peptide-specific, alloreactive (“allorestricted”) T cells versus T cells recognizing the foreign MHC molecule without regard to the peptide in the groove. Thus, the peptide repertoire of alloreactive T cells must be influenced by self-MHC molecules during positive or negative thymic selection or peripheral survival, much like the repertoire of the self-restricted T cells. In consequence, allorestricted, peptide-specific T cells (that are of interest for clinical applications) are easier to obtain if T cells and target cells express related MHC molecules.


2007 ◽  
Vol 123 ◽  
pp. S106-S107
Author(s):  
Eva Matejkova ◽  
Zuzana Hrotekova ◽  
Drahomira Kyjovska ◽  
Jaroslav Michalek ◽  
Petra Vidlakova

2020 ◽  
Author(s):  
Angélica Arcanjo ◽  
Jorgete Logullo ◽  
Paulo Emílio Corrêa Leite ◽  
Camilla Cristie Barreto Menezes ◽  
Celio Geraldo Freire-de-Lima ◽  
...  

Abstract COVID-19 is a disease caused by the novel SARS-CoV-2 coronavirus, originally classified as a severe acute respiratory syndrome coronavirus (SARS-CoV). The most severe cases of COVID-19 can progress to severe pneumonia with respiratory failure, septicemia, multiple organ failure and death. The severity of the disease is aggravated by the deregulation of the immune system causing an excessive initial inflammation including the cytokine storm, compring interleukins characteristic of the T-dependent adaptive response. In the present study we show that severe patients have high levels of T helper type-1 and type-2 cytokines, as well as VGEF. Furthermore, our show abnormal cytokine levels upon T-cell mitogen stimulation, in a non-polarized response profile. This response is not specific, given that the stimulus with the heterologous tuberculin antigen was able to induce high levels of cytokines compared to healthy controls, including the vascular endothelial growth factor VEGF, which promotes neoangiogenesis in physiological and pathophysiological conditions, caused by tissue hypoxia, and involved in a clonal exhaustion program in T cells. This can be decisive given our findings demonstrating for the first time a significantly increased frequency of late-differentiated CD8+ T cells characterized by critically shortened telomeres with particular phenotype (CD57+CD28-) in severe acute COVID-19 infection. These findings reveal that severe COVID-19 is associated with senescence of T cells, especially within the CD8+ T cell compartment and points to possible mechanisms of loss of clonal repertoire and susceptibility to recurrences of COVID-19 symptoms, due to viral relapse and reinfection events.


2005 ◽  
Vol 12 (7) ◽  
pp. 861-866 ◽  
Author(s):  
Elke Lainka ◽  
Michael S. Hershfield ◽  
Ines Santisteban ◽  
Pawan Bali ◽  
Annette Seibt ◽  
...  

ABSTRACT We describe the effects of polyethylene glycol-conjugated adenosine deaminase (ADA) replacement therapy on lymphocyte counts, activation, apoptosis, proliferation, and cytokine secretion in a 14-month-old girl with “delayed-onset” ADA deficiency and marked immunodysregulation. Pretreatment lymphopenia affected T cells (CD4, 150/μl; CD8, 459/μl), B cells (16/μl), and NK cells (55/μl). T cells were uniformly activated and largely apoptotic (CD4, 59%; CD8, 82%); and T-cell-dependent cytokine levels in plasma were elevated, including the levels of interleukin 2 (IL-2; 26 pg/ml), IL-4 (81 pg/ml), IL-5 (46 pg/ml), gamma interferon (1,430 pg/ml), tumor necrosis factor alpha (210 pg/ml), and IL-10 (168 pg/ml). Mitogen-stimulated peripheral blood mononuclear cells show reduced IL-2 secretion and proliferation. During the first 5 months of therapy there was clinical improvement and partial immune reconstitution, with nearly normal lymphocyte subset numbers, reduced T-cell activation and CD4-cell apoptosis, and decreased plasma cytokine levels. In parallel, IL-2 secretion and the lymphocyte mitogenic response improved. Between 4 and 7 months, immunoglobulin G antibodies to bovine ADA developed and resulted in the complete reversal of immune recovery.


2018 ◽  
Vol 2 (19) ◽  
pp. 2568-2580 ◽  
Author(s):  
Suparna Dutt ◽  
Michelle B. Atallah ◽  
Yoshitaka Minamida ◽  
Alexander Filatenkov ◽  
Kent P. Jensen ◽  
...  

Abstract Conventional local tumor irradiation (LTI), delivered in small daily doses over several weeks, is used clinically as a palliative, rather than curative, treatment for chemotherapy-resistant diffuse large B-cell lymphoma (DLBCL) for patients who are ineligible for hematopoietic cell transplantation. Our goal was to test the hypothesis that accelerated, but not conventional, LTI would be more curative by inducing T cell–mediated durable remissions. We irradiated subcutaneous A20 and BL3750 lymphoma tumors in mice with a clinically relevant total radiation dose of 30 Gy LTI, delivered in 10 doses of 3 Gy over 4 days (accelerated irradiation) or as 10 doses of 3 Gy over 12 days (conventional irradiation). Compared with conventional LTI, accelerated LTI resulted in more complete and durable tumor remissions. The majority of these mice were resistant to rechallenge with lymphoma cells, demonstrating the induction of memory antitumor immunity. The increased efficacy of accelerated LTI correlated with higher levels of tumor cell necrosis vs apoptosis and expression of “immunogenic cell death” markers, including calreticulin, heat shock protein 70 (Hsp70), and Hsp90. Accelerated LTI–induced remissions were not seen in immunodeficient Rag-2−/− mice, CD8+ T-cell–depleted mice, or Batf-3−/− mice lacking CD8α+ and CD103+ dendritic cells. Accelerated, but not conventional, LTI in immunocompetent hosts induced marked increases in tumor-infiltrating CD4+ and CD8+ T cells and MHCII+CD103+CD11c+ dendritic cells and corresponding reductions in exhausted PD-1+Eomes+CD8+ T cells and CD4+CD25+FOXP3+ regulatory T cells. These findings raise the possibility that accelerated LTI can provide effective immune control of human DLBCL.


Sign in / Sign up

Export Citation Format

Share Document