Antibody-dependent cellular cytotoxicity (ADCC) is mediated by genetically modified antigen-specific human T lymphocytes

Blood ◽  
2006 ◽  
Vol 107 (12) ◽  
pp. 4669-4677 ◽  
Author(s):  
Béatrice Clémenceau ◽  
Nicolas Congy-Jolivet ◽  
Géraldine Gallot ◽  
Régine Vivien ◽  
Joëlle Gaschet ◽  
...  

AbstractIn the context of transplantation, donor and virus-specific T-lymphocyte infusions have demonstrated the dramatic potential of T cells as immune effectors. Unfortunately, most attempts to exploit the T-cell immune system against nonviral malignancies in the syngeneic setting have been disappointing. In contrast, treatments based on monoclonal antibodies (Abs) have been clinically successful and have demonstrated the clinical relevance of several antigens as therapeutic targets and the importance of the antibody-dependent cellular cytotoxicity (ADCC) pathway. In the present study, we considered the possibility of arming specific T cells with a receptor that would enable them to mediate ADCC. After transduction with a CD16/γ receptor gene, CD4+ and CD8+ cytotoxic T lymphocytes displayed stable expression of the CD16 receptor at their surface. In the absence of Ab, CD16/γ expression did not affect the capacity of specific T lymphocytes to kill their target following “natural” T-cell receptor recognition. When tested against the autologous B-lymphoblastoid cell line (BLCL) coated with anti-CD20 mAb, the newly expressed Fc receptor enabled the T cells to kill the BLCL through ADCC. Adoptive transfer of such newly designed immune effector may be considered to increase antibody efficiency by harnessing the immune potential of T cells.

2007 ◽  
Vol 204 (6) ◽  
pp. 1371-1381 ◽  
Author(s):  
Ching-Yu Huang ◽  
Girdhar G. Sharma ◽  
Laura M. Walker ◽  
Craig H. Bassing ◽  
Tej K. Pandita ◽  
...  

Ataxia-telangiectasia mutated (ATM)–deficient lymphocytes exhibit defects in coding joint formation during V(D)J recombination in vitro. Similar defects in vivo should affect both T and B cell development, yet the lymphoid phenotypes of ATM deficiency are more pronounced in the T cell compartment. In this regard, ATM-deficient mice exhibit a preferential T lymphopenia and have an increased incidence of nontransformed and transformed T cells with T cell receptor α/δ locus translocations. We demonstrate that there is an increase in the accumulation of unrepaired coding ends during different steps of antigen receptor gene assembly at both the immunoglobulin and T cell receptor loci in developing ATM-deficient B and T lymphocytes. Furthermore, we show that the frequency of ATM-deficient αβ T cells with translocations involving the T cell receptor α/δ locus is directly related to the number of T cell receptor α rearrangements that these cells can make during development. Collectively, these findings demonstrate that ATM deficiency leads to broad defects in coding joint formation in developing B and T lymphocytes in vivo, and they provide a potential molecular explanation as to why the developmental impact of these defects could be more pronounced in the T cell compartment.


Author(s):  
Zhaoming Wang ◽  
Michael S. Chimenti ◽  
Christopher Strouse ◽  
George J. Weiner

AbstractAnti-CD20 monoclonal antibody (mAb) therapy is a mainstay of therapy for B cell malignancies, however many patients fail to respond or eventually develop resistance. The current understanding of mechanisms responsible for this resistance is limited. When peripheral blood mononuclear cells of healthy donors were cultured with Raji cells for 7 days, rituximab (RTX) induced NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC), enhanced NK cell viability and increased or maintained NK expression of CD56, CD16, CD57 and KIR. T cells, mainly CD4+, mediated these changes in a contact-dependent manner, with local T cell production of IL2 playing a central role. Similar findings were found when autologous B cells were used as target cells demonstrating the need for T cell help was not due to allogenic reaction. Results with other anti-CD20 and anti-EGFR antibodies were consistent. Small numbers of T cells activated by anti-CD3/CD28 beads or bispecific antibody enhanced RTX-mediated NK cell ADCC, viability and phenotypical changes. Pathway analysis of bulk NK cell mRNA sequencing after activation by RTX with and without T cells was consistent with T cells maintaining the viability of the activated NK cells. These findings suggest T cell help, mediated in large part by local production of IL2, contributes to NK cell ADCC and viability, and that activating T cells in the tumor microenvironment, such as through the use of anti-CD3 based bispecific antibodies, could enhance the efficacy of anti-CD20 and other mAb therapies where NK-mediated ADCC is a primary mechanism of action.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 585-594 ◽  
Author(s):  
Linda A. Trimble ◽  
Judy Lieberman

Although human immunodeficiency virus (HIV)-infected subjects without acquired immunodeficiency syndrome have a high frequency of HIV-specific CD8 T lymphocytes, freshly isolated lymphocytes frequently lack detectable HIV-specific cytotoxicity. However, this effector function becomes readily apparent after overnight culture. To investigate reasons for T-cell dysfunction, we analyzed T-cell expression of the cytolytic protease granzyme A and of CD3ζ, the signaling component of the T-cell receptor complex. An increased proportion of CD4 and CD8 T cells from HIV-infected donors contain granzyme A, consistent with the known increased frequency of activated T cells. In 28 HIV-infected donors with mild to advanced immunodeficiency, a substantial fraction of circulating T cells downmodulated CD3ζ (fraction of T cells expressing CD3ζ, 0.74 ± 0.16 v 1.01 ± 0.07 in healthy donors; P < .0000005). CD3ζ expression is downregulated more severely in CD8 than CD4 T cells, decreases early in infection, and correlates with declining CD4 counts and disease stage. CD3ζ expression increases over 6 to 16 hours of culture in an interleukin-2–dependent manner, coincident with restoration of viral-specific cytotoxicity. Impaired T-cell receptor signaling may help explain why HIV-specific cytotoxic T lymphocytes fail to control HIV replication.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Alexandria C Wells ◽  
Keith A Daniels ◽  
Constance C Angelou ◽  
Eric Fagerberg ◽  
Amy S Burnside ◽  
...  

The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses.


2015 ◽  
Vol 21 (23) ◽  
pp. 5191-5197 ◽  
Author(s):  
Thomas M. Schmitt ◽  
Ingunn M. Stromnes ◽  
Aude G. Chapuis ◽  
Philip D. Greenberg

2013 ◽  
Vol 58 ◽  
pp. S107 ◽  
Author(s):  
W. Qasim ◽  
M. Brunetto ◽  
A. Gehring ◽  
S.-A. Xue ◽  
H. Zhan ◽  
...  

Gene Therapy ◽  
2005 ◽  
Vol 12 (23) ◽  
pp. 1686-1695 ◽  
Author(s):  
L T van der Veken ◽  
M Hoogeboom ◽  
R A de Paus ◽  
R Willemze ◽  
J H F Falkenburg ◽  
...  

2003 ◽  
Vol 10 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Monica Kharbanda ◽  
Thomas W. McCloskey ◽  
Rajendra Pahwa ◽  
Mei Sun ◽  
Savita Pahwa

ABSTRACT Perturbations in the T-cell receptor (TCR) Vβ repertoire were assessed in the CD4 and CD8 T lymphocytes of human immunodeficiency virus (HIV)-infected children who were receiving therapy during the chronic phase of infection by flow cytometry (FC) and PCR analysis. By FC, representation of 21 TCR Vβ subfamilies was assessed for an increased or decreased percentage in CD4 and CD8 T cells, and by PCR, 22 TCR Vβ subfamilies of CD4 and CD8 T cells were analyzed by CDR3 spectratyping for perturbations and reduction in the number of peaks, loss of Gaussian distribution, or clonal dominance. The majority of the TCR Vβ subfamilies were examined by both methods and assessed for deviation from the norm by comparison with cord blood samples. The CD8-T-lymphocyte population exhibited more perturbations than the CD4 subset, and clonal dominance was present exclusively in CD8 T cells. Of the 55 total CD8-TCR Vβ families classified with clonal dominance by CDR3 spectratyping, only 18 of these exhibited increased expression by FC. Patients with high numbers of CD8-TCR Vβ families with decreased percentages had reduced percentages of total CD4 T cells. Increases in the number of CD4-TCR Vβ families with increased percentages showed a positive correlation with skewing. Overall, changes from normal were often discordant between the two methods. This study suggests that the assessment of HIV-induced alterations in TCR Vβ families at cellular and molecular levels yields different information and that our understanding of the immune response to HIV is still evolving.


Sign in / Sign up

Export Citation Format

Share Document