scholarly journals CCAAT/enhancer binding proteins alpha and epsilon cooperate with all-trans retinoic acid in therapy but differ in their antileukemic activities

Blood ◽  
2006 ◽  
Vol 108 (7) ◽  
pp. 2416-2419 ◽  
Author(s):  
Young-Jin Lee ◽  
Letetia C. Jones ◽  
Nikolai A. Timchenko ◽  
Danilo Perrotti ◽  
Daniel G. Tenen ◽  
...  

Abstract CCAAT/enhancer binding proteins (C/EBPs) play critical roles in myelopoiesis. Dysregulation of these proteins likely contributes to the pathogenesis of myeloid disorders characterized by a block in granulopoiesis. In one such disease, acute promyelocytic leukemia (APL), a promyelocytic leukemia–retinoic acid receptor α (PML-RARα) fusion protein is expressed as a result of a t(15;17) chromosomal translocation. Treatment of PML-RARα leukemic cells with all-trans retinoic acid (ATRA) causes them to differentiate into mature neutrophils, an effect thought to be mediated by C/EBPs. In this study, we assess the potential for cooperativity between increased C/EBP activity and ATRA therapy. We demonstrate that although both C/EBPα and C/EBPϵ can significantly prolong survival in a mouse model of APL, they are not functionally equivalent in this capacity. We also show that forced expression of C/EBPα or C/EBPϵ in combination with ATRA treatment has a synergistic effect on survival of leukemic mice compared with either therapy alone.

Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5289-5297 ◽  
Author(s):  
Zhi-Min Gu ◽  
Ying-Li Wu ◽  
Mei-Yi Zhou ◽  
Chuan-Xu Liu ◽  
Han-Zhang Xu ◽  
...  

Abstract All-trans retinoic acid (ATRA), a natural ligand for the retinoic acid receptors (RARs), induces clinical remission in most acute promyelocytic leukemia (APL) patients through the induction of differentiation and/or eradication of leukemia-initiating cells. Here, we identify a novel natural ent-kaurene diterpenoid derived from Isodon pharicus leaves, called pharicin B, that can rapidly stabilize RAR-α protein in various acute myeloid leukemic (AML) cell lines and primary leukemic cells from AML patients, even in the presence of ATRA, which is known to induce the loss of RAR-α protein. Pharicin B also enhances ATRA-dependent the transcriptional activity of RAR-α protein in the promyelocytic leukemia–RARα–positive APL cell line NB4 cells. We also showed that pharicin B presents a synergistic or additive differentiation-enhancing effect when used in combination with ATRA in several AML cell lines and, especially, some primary leukemic cells from APL patients. In addition, pharicin B can overcome retinoid resistance in 2 of 3 NB4-derived ATRA-resistant subclones. These findings provide a good example for chemical biology–based investigations of pathophysiological and therapeutic significances of RAR-α and PML-RAR-α proteins. The effectiveness of the ATRA/pharicin B combination warrants further investigation on their use as a therapeutic strategy for AML patients.


Blood ◽  
2011 ◽  
Vol 117 (15) ◽  
pp. 4095-4105 ◽  
Author(s):  
Paul A. O'Connell ◽  
Patricia A. Madureira ◽  
Jason N. Berman ◽  
Robert S. Liwski ◽  
David M. Waisman

Abstract Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia that results from the expression of the promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) oncoprotein. It is characterized by severe hemorrhagic complications due in part to excessive fibrinolysis, resulting from the excessive generation of the fibrinolytic enzyme, plasmin, at the cell surface of the PML cells. The treatment of patients with all-trans retinoic acid (ATRA) effectively ameliorates the disease by promoting the destruction of the PML-RAR-α oncoprotein. In the present study we show for the first time that the plasminogen receptor, S100A10, is present on the extracellular surface of APL cells and is rapidly down-regulated in response to all-trans retinoic acid. The loss of S100A10 is concomitant with a loss in fibrinolytic activity. Furthermore, the induced expression of the PML-RAR-α oncoprotein increased the expression of cell surface S100A10 and also caused a dramatic increase in fibrinolytic activity. Depletion of S100A10 by RNA interference effectively blocked the enhanced fibrinolytic activity observed after induction of the PML-RAR-α oncoprotein. These experiments show that S100A10 plays a crucial role in the generation of plasmin leading to fibrinolysis, thus providing a link to the clinical hemorrhagic phenotype of APL.


Blood ◽  
2010 ◽  
Vol 115 (22) ◽  
pp. 4507-4516 ◽  
Author(s):  
Shuchi Agrawal-Singh ◽  
Steffen Koschmieder ◽  
Sandra Gelsing ◽  
Carol Stocking ◽  
Martin Stehling ◽  
...  

Abstract Although the potential role of Pim2 as a cooperative oncogene has been well described in lymphoma, its role in leukemia has remained largely unexplored. Here we show that high expression of Pim2 is observed in patients with acute promyelocytic leukemia (APL). To further characterize the cooperative role of Pim2 with promyelocytic leukemia/retinoic acid receptor α (PML/RARα), we used a well-established PML-RARα (PRα) mouse model. Pim2 coexpression in PRα-positive hematopoietic progenitor cells (HPCs) induces leukemia in recipient mice after a short latency. Pim2-PRα cells were able to repopulate mice in serial transplantations and to induce disease in all recipients. Neither Pim2 nor PRα alone was sufficient to induce leukemia upon transplantation in this model. The disease induced by Pim2 overexpression in PRα cells contained a slightly higher fraction of immature myeloid cells, compared with the previously described APL disease induced by PRα. However, it also clearly resembled an APL-like phenotype and showed signs of differentiation upon all-trans retinoic acid (ATRA) treatment in vitro. These results support the hypothesis that Pim2, which is also a known target of Flt3-ITD (another gene that cooperates with PML-RARα), cooperates with PRα to induce APL-like disease.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1977-1980 ◽  
Author(s):  
Shi-Wu Li ◽  
Dongqi Tang ◽  
Kim P. Ahrens ◽  
Jin-Xiong She ◽  
Raul C. Braylan ◽  
...  

It is well known that all-trans-retinoic acid (ATRA) can induce myeloid cell differentiation in acute promyelocytic leukemia (APL) cells. In this study, we found that ATRA treatment of the APL cell line NB4 induced the expression of CD52, both at transcriptional and translational levels. CD52 is a 21- to 28-kDa nonmodulating cell surface glycosylphosphatidylinositol-linked glycoprotein expressed on lymphocytes and monocytes, but not in human myeloid cells. The ATRA-dependent induction of CD52 expression was not observed in non-promyelocytic leukemia cell lines such as K562, U937, and HL-60, suggesting that induction of CD52 by ATRA may be specific to leukemic cells that express promyelocytic leukemia–retinoic acid receptor α (PML-RARα) or are at the promyelocytic stage of myeloid development. Antibodies against CD52 are used therapeutically against lymphocytes in certain leukemias and in patients undergoing transplantation. An ATRA-induced high level of CD52 expression might potentially serve as a novel therapeutic target in treatment of APL.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1313 ◽  
Author(s):  
Marta Sobas ◽  
Maria Carme Talarn-Forcadell ◽  
David Martínez-Cuadrón ◽  
Lourdes Escoda ◽  
María J. García-Pérez ◽  
...  

It has been suggested that 1–2% of acute promyelocytic leukemia (APL) patients present variant rearrangements of retinoic acid receptor alpha (RARα) fusion gene, with the promyelocytic leukaemia zinc finger (PLZF)/RARα being the most frequent. Resistance to all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) has been suggested in PLZF/RARα and other variant APLs. Herein, we analyze the incidence, characteristics, and outcomes of variant APLs reported to the multinational PETHEMA (Programa para el Tratamiento de Hemopatias Malignas) registry, and we perform a systematic review in order to shed light on strategies to improve management of these extremely rare diseases. Of 2895 patients with genetically confirmed APL in the PETHEMA registry, 11 had variant APL (0.4%) (9 PLZF-RARα and 2 NPM1-RARα), 9 were men, with median age of 44.6 years (3 months to 76 years), median leucocytes (WBC) 16.8 × 109/L, and frequent coagulopathy. Eight patients were treated with ATRA plus chemotherapy-based regimens, and 3 with chemotherapy-based. As compared to previous reports, complete remission and survival was slightly better in our cohort, with 73% complete remission (CR) and 73% survival despite a high relapse rate (43%). After analyzing our series and performing a comprehensive and critical review of the literature, strong recommendations on appropriate management of variant APL are not possible due to the low number and heterogeneity of patients reported so far.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1520-1531 ◽  
Author(s):  
M Gianni ◽  
M Li Calzi ◽  
M Terao ◽  
G Guiso ◽  
S Caccia ◽  
...  

All-trans retinoic acid (ATRA) is successfully used in the cyto- differentiating treatment of acute promyelocytic leukemia (APL). Paradoxically, APL cells express PML-RAR, an aberrant form of the retinoic acid receptor type alpha (RAR alpha) derived from the leukemia- specific t(15;17) chromosomal translocation. We show here that AM580, a stable retinobenzoic derivative originally synthesized as a RAR alpha agonist, is a powerful inducer of granulocytic maturation in NB4, an APL-derived cell line, and in freshly isolated APL blasts. After treatment of APL cells with AM580 either alone or in combination with granulocyte colony-stimulating factor (G-CSF), the compound induces granulocytic maturation, as assessed by determination of the levels of leukocyte alkaline phosphatase, CD11b, CD33, and G-CSF receptor mRNA, at concentrations that are 10- to 100-fold lower than those of ATRA necessary to produce similar effects. By contrast, AM580 is not effective as ATRA in modulating the expression of these differentiation markers in the HL-60 cell line and in freshly isolated granulocytes obtained from the peripheral blood of chronic myelogenous leukemia patients during the stable phase of the disease. In NB4 cells, two other synthetic nonselective RAR ligands are capable of inducing LAP as much as AM580, whereas RAR beta- or RAR gamma-specific ligands are totally ineffective. These results show that AM580 is more powerful than ATRA in modulating the expression of differentiation antigens only in cells in which PML-RAR is present. Binding experiments, using COS-7 cells transiently transfected with PML-RAR and the normal RAR alpha, show that AM580 has a lower affinity than ATRA for both receptors. However, in the presence of PML-RAR, the synthetic retinoid is a much better transactivator of retinoic acid-responsive element-containing promoters than the natural retinoid, whereas, in the presence of RAR alpha, AM580 and ATRA have similar activity. This may explain the strong cyto-differentiating potential of AM580 in PML-RAR-containing leukemic cells.


Sign in / Sign up

Export Citation Format

Share Document