scholarly journals BCR ubiquitination controls BCR-mediated antigen processing and presentation

Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 4086-4093 ◽  
Author(s):  
Lisa Drake ◽  
Erica M. McGovern-Brindisi ◽  
James R. Drake

Abstract BCR-mediated antigen processing occurs at immunologically relevant antigen concentrations and hinges on the trafficking of antigen-BCR (Ag-BCR) complexes to class II–containing multivesicular bodies (MVBs) termed MIICs. However, the molecular mechanism underlying the trafficking of Ag-BCR complexes to and within MIICs is not well understood. In contrast, the trafficking of the epidermal growth factor receptor (EGFR) to and within MVBs occurs via a well-characterized ubiquitin-dependent mechanism, which is blocked by acute inhibition of proteasome activity. Using a highly characterized antigen-specific model system, it was determined that the immunoglobulin heavy chain subunit of the IgM BCR of normal (ie, nontransformed) B cells is ubiquitinated. Moreover, acute inhibition of proteasome activity delays the formation of ubiquitinated ligand–BCR complexes, alters the intracellular trafficking of internalized Ag-BCR complexes, and selectively blocks the BCR-mediated processing and presentation of cognate antigen, without inhibiting the endocytosis, processing, and presentation of non–cognate antigen internalized by fluidphase endocytosis. These results demonstrate that the trafficking of Ag-BCR complexes to and within MVB-like antigen processing compartments occurs via a molecular mechanism with similarities to that used by the EGFR, and establishes the EGFR as a paradigm for the further analysis of Ag-BCR trafficking to and within MIICs.

2003 ◽  
Vol 23 (21) ◽  
pp. 7875-7886 ◽  
Author(s):  
Yehenew M. Agazie ◽  
Michael J. Hayman

ABSTRACT The Src homology 2-containing phosphotyrosine phosphatase (SHP2) is primarily a positive effector of receptor tyrosine kinase signaling. However, the molecular mechanism by which SHP2 effects its biological function is unknown. In this report, we provide evidence that defines the molecular mechanism and site of action of SHP2 in the epidermal growth factor-induced mitogenic pathway. We demonstrate that SHP2 acts upstream of Ras and functions by increasing the half-life of activated Ras (GTP-Ras) in the cell by interfering with the process of Ras inactivation catalyzed by Ras GTPase-activating protein (RasGAP). It does so by inhibition of tyrosine phosphorylation-dependent translocation of RasGAP to the plasma membrane, to its substrate (GTP-Ras) microdomain. Inhibition is achieved through the dephosphorylation of RasGAP binding sites at the level of the plasma membrane. We have identified Tyr992 of the epidermal growth factor receptor (EGFR) to be one such site, since its mutation to Phe renders the EGFR refractory to the effect of dominant-negative SHP2. To our knowledge, this is the first report to outline the site and molecular mechanism of action of SHP2 in EGFR signaling, which may also serve as a model to describe its role in other receptor tyrosine kinase signaling pathways.


2009 ◽  
Vol 20 (6) ◽  
pp. 1816-1832 ◽  
Author(s):  
Quyen L. Aoh ◽  
Anna M. Castle ◽  
Charles H. Hubbard ◽  
Osamu Katsumata ◽  
J. David Castle

The epidermal growth factor receptor (EGFR) is targeted for lysosomal degradation by ubiquitin-mediated interactions with the ESCRTs (endosomal-sorting complexes required for transport) in multivesicular bodies (MVBs). We show that secretory carrier membrane protein, SCAMP3, localizes in part to early endosomes and negatively regulates EGFR degradation through processes that involve its ubiquitylation and interactions with ESCRTs. SCAMP3 is multimonoubiquitylated and is able to associate with Nedd4 HECT ubiquitin ligases and the ESCRT-I subunit Tsg101 via its PY and PSAP motifs, respectively. SCAMP3 also associates with the ESCRT-0 subunit Hrs. Depletion of SCAMP3 in HeLa cells by inhibitory RNA accelerated degradation of EGFR and EGF while inhibiting recycling. Conversely, overexpression enhanced EGFR recycling unless ubiquitylatable lysines, PY or PSAP motifs in SCAMP3 were mutated. Notably, dual depletions of SCAMP3 and ESCRT subunits suggest that SCAMP3 has a distinct function in parallel with the ESCRTs that regulates receptor degradation. This function may affect trafficking of receptors from prelysosomal compartments as SCAMP3 depletion appeared to sustain the incidence of EGFR-containing MVBs detected by immunoelectron microscopy. Together, our results suggest that SCAMP3, its modification with ubiquitin, and its interactions with ESCRTs coordinately regulate endosomal pathways and affect the efficiency of receptor down-regulation.


Antibodies ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 49
Author(s):  
Jackie Cheng ◽  
Meina Liang ◽  
Miguel F. Carvalho ◽  
Natalie Tigue ◽  
Raffaella Faggioni ◽  
...  

Amplification and overexpression of HER2 (human epidermal growth factor receptor 2), an ErbB2 receptor tyrosine kinase, have been implicated in human cancer and metastasis. A bispecific tetravalent anti-HER2 antibody (anti-HER2-Bs), targeting two non-overlapping epitopes on HER2 in domain IV (trastuzumab) and domain II (39S), has been reported to induce rapid internalization and efficient degradation of HER2 receptors. In this study, we investigated the molecular mechanism of this antibody-induced rapid HER2 internalization and intracellular trafficking. Using quantitative fluorescent imaging, we compared the internalization kinetics of anti-HER2-Bs and its parental arm antibodies, alone or in combinations and under various internalization-promoting conditions. The results demonstrated that concurrent engagement of both epitopes was necessary for rapid anti-HER2-Bs internalization. Cellular uptake of anti-HER2-Bs and parental arm antibodies occurred via clathrin-dependent endocytosis; however, inside the cells antibodies directed different trafficking pathways. Trastuzumab dissociated from HER2 in 2 h, enabling the receptor to recycle, whereas anti-HER2-Bs stayed associated with the receptor throughout the entire endocytic pathway, promoting receptor ubiquitination, trafficking to the lysosomes, and efficient degradation. Consistent with routing HER2 to degradation, anti-HER2-Bs significantly reduced HER2 shedding and altered its exosomal export. Collectively, these results enable a better understanding of the mechanism of action of anti-Her2-Bs and can guide the rational design of anti-HER2 therapeutics as well as other bispecific molecules.


2012 ◽  
Vol 445 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Qiong Lin ◽  
Jian Wang ◽  
Chandra Childress ◽  
Wannian Yang

ACK [activated Cdc42 (cell division cycle 42)-associated tyrosine kinase; also called TNK2 (tyrosine kinase, non-receptor, 2)] is activated in response to multiple cellular signals, including cell adhesion, growth factor receptors and heterotrimeric G-protein-coupled receptor signalling. However, the molecular mechanism underlying activation of ACK remains largely unclear. In the present study, we demonstrated that interaction of the SH3 (Src homology 3) domain with the EBD [EGFR (epidermal growth factor receptor)-binding domain] in ACK1 forms an auto-inhibition of the kinase activity. Release of this auto-inhibition is a key step for activation of ACK1. Mutation of the SH3 domain caused activation of ACK1, independent of cell adhesion, suggesting that cell adhesion-mediated activation of ACK1 is through releasing the auto-inhibition. A region at the N-terminus of ACK1 (Leu10–Leu14) is essential for cell adhesion-mediated activation. In the activation of ACK1 by EGFR signalling, Grb2 (growth-factor-receptor-bound protein 2) mediates the interaction of ACK1 with EGFR through binding to the EBD and activates ACK1 by releasing the auto-inhibition. Furthermore, we found that mutation of Ser445 to proline caused constitutive activation of ACK1. Taken together, our studies have revealed a novel molecular mechanism underlying activation of ACK1.


Sign in / Sign up

Export Citation Format

Share Document