scholarly journals Effects of membrane and soluble EPCR on the hemostatic balance and endotoxemia in mice

Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 1003-1009 ◽  
Author(s):  
Xunzhen Zheng ◽  
Weihong Li ◽  
Jian-Ming Gu ◽  
Dongfeng Qu ◽  
Gary L. Ferrell ◽  
...  

Abstract Recent studies have shown that endothelial protein C receptor (EPCR) polymorphisms and soluble EPCR levels are associated with thrombotic diseases. It is unknown whether membrane EPCR (mEPCR) heterozygosity and/or physiologically elevated sEPCR levels directly impact the hemostatic balance and the outcome of endotoxemia. In these studies, thrombin infusion experiments revealed that EPCR heterozygosity (Procr+/−) impaired protein C activation by approximately 30%. Infusion of factor Xa with phospholipid demonstrated that the Procr+/−genotype increased the coagulant response relative to wild-type mice. Challenge of the Procr+/− mice with lipopolysaccharide (LPS) did not significantly exaggerate their response compared with wild-type mice. We also generated mice in which one allele of full-length EPCR was replaced by sEPCR (Procrs/+). Compared with Procr+/− mice, Procrs/+ mice had 5-fold higher sEPCR and similar mEPCR levels. Procr+/− and Procrs/+ mice generated similar levels of activated protein C (APC) upon thrombin infusion. They also exhibited a similar coagulant response upon factor Xa/phospholipid infusion. Only supraphysiologic levels of sEPCR could influence protein C activation and exaggerate the coagulant response. In conclusion, mEPCR, but not physiologically elevated sEPCR, regulated protein C activation. Procr heterozygosity results in a mild increase of thrombosis tendency and little influence on the response to endotoxin.

Author(s):  
Di Ren ◽  
Julia Fedorova ◽  
Kayla Davitt ◽  
Tran Ngoc Van Le ◽  
John H Griffin ◽  
...  

Background: Activated protein C (APC) is a plasma serine protease with anticoagulant and anti-inflammatory activities. Endothelial protein C receptor (EPCR) is associated with APC's activity and mediates its downstream signaling events. APC exerts cardioprotective effects during ischemia and reperfusion (I/R). This study aims to characterize the role of the APC-EPCR axis in ischemic insults in aging. Methods: Young (3-4 months) and aged (24-26 months) wild type C57BL/6J mice, as well as EPCR point mutation (EPCR R84A/R84A ) knock-in C57BL/6J mice incapable of interaction with APC and its wild type of littermate C57BL/6J mice, were subjected to I/R. Wild type APC, signaling-selective APC-2Cys, or anticoagulant-selective APC-E170A were administrated before reperfusion. Results: The results demonstrated that cardiac I/R reduces APC activity, and the APC activity was impaired in the aged versus young hearts possibly attributable to the declined EPCR level with aging. Serum EPCR measurement showed that I/R triggered the shedding of membrane EPCR into circulation, while administration of APC attenuated the I/R-induced EPCR shedding in both young and aged hearts. Subsequent echocardiography showed that APC and APC-2Cys but not APC-E170A ameliorated cardiac dysfunction during I/R in both young and aged mice. Importantly, APC elevated the resistance of the aged heart to ischemic insults through stabilizing EPCR. However, all these cardioprotective effects of APC were blunted in the EPCR R84A/R84A mice versus its wild-type littermates. The ex vivo working heart and metabolomics results demonstrated that AMP-activated protein kinase (AMPK) mediates acute adaptive response while protein kinase B (AKT) is involved in chronic metabolic programming in the hearts with APC treatment. Conclusions: I/R stress causes shedding of the membrane EPCR in the heart, and administration of APC prevents I/R-induced cardiac EPCR shedding that is critical for limiting cardiac damage in aging.


2015 ◽  
Vol 114 (12) ◽  
pp. 1144-1155 ◽  
Author(s):  
Eveline A. M. Bouwens ◽  
Fabian Stavenuiter ◽  
Laurent O. Mosnier

SummaryThe protein C (PC) system conveys beneficial anticoagulant and cytoprotective effects in numerous in vivo disease models. The endothelial protein C receptor (EPCR) plays a central role in these pathways as cofactor for PC activation and by enhancing activated protein C (APC)-mediated protease-activated receptor (PAR) activation. During inflammatory disease, expression of EPCR on cell membranes is often diminished thereby limiting PC activation and APC’s effects on cells. Here a caveolae-targeting glycosylphosphatidylinositol (GPI)-anchored EPCR (EPCR-GPI) was engineered to restore EPCR’s bioavailability via “cell painting.” The painting efficiency of EPCR-GPI on EPCR-depleted endothelial cells was time- and dose-dependent. The EPCR-GPI bioavailability after painting was long lasting since EPCR surface levels reached 400 % of wild-type cells after 2 hours and remained > 200 % for 24 hours. EPCR-GPI painting conveyed APC binding to EPCR-depleted endothelial cells where EPCR was lost due to shedding or shRNA. EPCR painting normalised PC activation on EPCR-depleted cells indicating that EPCR-GPI is functional active on painted cells. Caveolin-1 lipid rafts were enriched in EPCR after painting due to the GPI-anchor targeting caveolae. Accordingly, EPCR painting supported PAR1 and PAR3 cleavage by APC and augmented PAR1-dependent Akt phosphorylation by APC. Thus, EPCR-GPI painting achieved physiological relevant surface levels on endothelial cells, restored APC binding to EPCR-depleted cells, supported PC activation, and enhanced APC-mediated PAR cleavage and cytoprotective signalling. Therefore, EPCRGPI provides a novel tool to restore the bioavailability and functionality of EPCR on EPCR- depleted and -deficient cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 26-26 ◽  
Author(s):  
Edward J. Kerschen ◽  
Brian C. Cooley ◽  
Francis J. Castellino ◽  
John H. Griffin ◽  
Hartmut Weiler

Abstract Recombinant activated protein C (APC) reduces mortality of patients with severe inflammatory disease associated with multi-organ failure. APC exerts anticoagulant, anti-inflammatory, and cytoprotective effects. The contribution of these distinct APC activities to the overall therapeutic efficacy in septic patients is unknown. The aim of the study is to delineate the mechanism underlying the protective effect of APC in mouse endotoxemia. We first establish an experimental mouse model to demonstrate that recombinant murine APC reduces 6 day mortality of mice subjected to LPS-induced endotoxemia. APC treatment did not alter the extent of inflammatory cytokine release. Recombinant human APC did not exhibit therapeutic efficacy in this model. In contrast, recombinant human and mouse APC reduced to a similar extent experimentally induced arterial thrombus formation. The therapeutic efficacy of wild type recombinant murine APC was abolished in genetically engineered mice with reduced expression of the endothelial protein C receptor (EPCR). Recombinant mutant murine APC with greatly reduced anticoagulant potency was as effective as wild type murine APC in reducing mortality of mice subjected to LPS-induced septicemia. Mice homozygous for the Leiden polymorphism in the factor V (fV) gene, which renders coagulation factor V partially resistant to the anticoagulant effect of APC secondary to blocked fV proteolysis at R504 (R506 in humans), were refractory to the therapeutic benefit conveyed by administration of recombinant wild type mouse APC. In summary, these findings provide evidence that the therapeutic efficacy of recombinant APC is predominantly based on the ability of APC to interact with the endothelial protein C receptor, and that the anticoagulant activity of APC is not sufficient for achieving protection against mortality in a mouse model of endotoxemia. On the other hand, cleavage of fV at R506 appears necessary for retaining therapeutic efficacy in carriers of the fV Leiden allele.


Author(s):  
David Stacey ◽  
Lingyan Chen ◽  
Joanna M. M. Howson ◽  
Amy M. Mason ◽  
Stephen Burgess ◽  
...  

AbstractGenome-wide association studies have identified many individual genetic loci associated with multiple complex traits and common diseases. There are, however, few examples where the molecular basis of such pleiotropy has been elucidated. To address this challenge, we describe an integrative approach, focusing on the p.Ser219Gly (rs867186 A>G) variant in the PROCR gene (encoding the endothelial protein C receptor, EPCR), which has been associated with lower coronary artery disease (CAD) risk but higher venous thromboembolism (VTE) risk. In a phenome scan of 12 cardiometabolic diseases and 24 molecular factors, we found that PROCR-219Gly associated with higher plasma levels of zymogenic and activated protein C as well as coagulation factor VII. Using statistical colocalization and Mendelian randomization analyses, we uncovered shared genetic etiology across activated protein C, factor VII, CAD and VTE, identifying p.S219G as the likely causal variant at the locus. In a recall-by-genotype study of 52 healthy volunteers stratified by p.S219G, we detected 2.5-fold higher soluble EPCR levels and 1.2-fold higher protein C levels in plasma per effect allele, suggesting the allele induces EPCR shedding from the membrane of endothelial cells. Finally, in cell adhesion assays, we found that increasing concentrations of activated protein C, but not soluble EPCR, reduced leukocyte–endothelial cell adhesion, a marker for vascular inflammation. These results support a role for protein C as a causal factor in arterial and venous diseases, suggesting that PROCR-219Gly protects against CAD through anti-inflammatory mechanisms while it promotes VTE risk through pro-thrombotic mechanisms. Overall, our study illustrates a multi-modal approach that can help reveal molecular underpinnings of cross-disease associations.


2019 ◽  
Author(s):  
Lin Yang ◽  
Ruilian Xin ◽  
Shanchun Guo ◽  
Mingli Liu

Abstract The interaction between the P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of parasitized red blood cells (pRBC) and the endothelial cells (EC) receptors during P. falciparum infection results in the sequestration of pRBC from blood circulation. The amount of sequestration is determined by specific interactions among PfEMP1 and several host adhesion receptors, including intercellular adhesion molecule 1 (ICAM-1), CD36, and endothelial protein C receptor (EPCR). PfEMP1 is composed of multiple domains such as the cysteine-rich inter domain region (CIDR) and Duffy binding –like (DBL) domains. CIDRα1 competitively binds to EPCR with activated protein C (APC) and impair cytoprotective and anticoagulant effects by APC, which plays an important role in severe malaria (SM) pathogenesis such as cerebral malaria (CM) and severe malaria anemia (SMA). The strategy to inhibit EPCR binding to pRBC while to concomitantly strengthen its binding to APC may be crucial in restoring impaired protein C (PC) system’s function. The purpose of this study is to evaluate the association between severity of malaria and the EPCR genotypes as well as the soluble EPCR (sEPCR), and the study also addresses the physiological relevance of EPCR genetic polymorphism. In this study, we conducted meta-analysis on the eligible studies by comparing the frequency of EPCR rs867186-GG versus rs867186- GA and -AA genotype in SM, mild malaria (MM) or uncomplicated malaria (UM) patients and healthy individuals from Thailand, Uganda, Benin, Tanzania, and Ghana. We also determined the relationship between rs867186 genotype and sEPCR levels. Our results showed that the gene type of rs867186-GG is higher in MM/UM than in SM patients. SM patients carrying the rs867186-GG genotype have higher plasma soluble EPCR (sEPCR) levels than in rs867186-AG and rs867186-AA carriers. A significant difference is seen with the higher plasma sEPCR expression among MM/UM patients carrying the rs867186-AG genotype compared to those carrying rs867186-AA. Similarly, the rs867186-GG is associated with sEPCR level in healthy individuals. In conclusion, this meta-analysis demonstrates that pRBCs and EPCR interactions are associated with malaria severity, and treatments that block pRBC binding to EPCR via PfEMP1 CIDRα1 could be a potential therapy for SM.


1986 ◽  
Vol 56 (02) ◽  
pp. 115-119 ◽  
Author(s):  
Eugene G Levin ◽  
David M Stern ◽  
Peter P Nawroth ◽  
Richard A Marlar ◽  
Daryl S Fair ◽  
...  

SummaryThe addition of thrombin (9 nM) to primary cultures of human endothelial cells induces a 6- to 7-fold increase in the rate of release of tissue plasminogen activator (tPA). Several other serine proteases which specifically interact with endothelial cells were also analyzed for their effect on tPA release. Gamma-thrombin, an autocatalytic product of α-thrombin, promoted tPA release but was less effective than α-thrombin. A maximum increase of 5.5-fold was observed, although a concentration of γ-thrombin 20 times greater than α-thrombin was required. The response to Factor Xa was similar to α-thrombin, although the stimulation was significantly reduced by the addition of hirudin or DAPA suggesting that prothrombin activation was occurring. The simultaneous addition of prothrombin with Factor Xa resulted in enhanced tPA release equal to that observed with an equimolar concentration of active α-thrombin. Thus, under these conditions, Factor Xa-cell surface mediated activation of prothrombin can lead to a secondary effect resulting from cell-thrombin interaction. Activated protein C, which has been implicated as a profibrinolytic agent, was also tested. No change in tPA release occurred after the addition of up to 325 nM activated protein C in the presence or absence of proteins. Factor IXa and plasmin were also ineffective. The effect of thrombin on the endothelial cell derived plasminogen activator specific inhibitor was also studied. Thrombin produced a small but variable release of the inhibitor with an increase of less than twice that of non-thrombin treated controls.


1982 ◽  
Vol 257 (3) ◽  
pp. 1443-1447
Author(s):  
M.E. Nesheim ◽  
W.M. Canfield ◽  
W. Kisiel ◽  
K.G. Mann

Sign in / Sign up

Export Citation Format

Share Document