Activated Protein C Strengthens Cardiac Tolerance to Ischemic Insults in Aging

Author(s):  
Di Ren ◽  
Julia Fedorova ◽  
Kayla Davitt ◽  
Tran Ngoc Van Le ◽  
John H Griffin ◽  
...  

Background: Activated protein C (APC) is a plasma serine protease with anticoagulant and anti-inflammatory activities. Endothelial protein C receptor (EPCR) is associated with APC's activity and mediates its downstream signaling events. APC exerts cardioprotective effects during ischemia and reperfusion (I/R). This study aims to characterize the role of the APC-EPCR axis in ischemic insults in aging. Methods: Young (3-4 months) and aged (24-26 months) wild type C57BL/6J mice, as well as EPCR point mutation (EPCR R84A/R84A ) knock-in C57BL/6J mice incapable of interaction with APC and its wild type of littermate C57BL/6J mice, were subjected to I/R. Wild type APC, signaling-selective APC-2Cys, or anticoagulant-selective APC-E170A were administrated before reperfusion. Results: The results demonstrated that cardiac I/R reduces APC activity, and the APC activity was impaired in the aged versus young hearts possibly attributable to the declined EPCR level with aging. Serum EPCR measurement showed that I/R triggered the shedding of membrane EPCR into circulation, while administration of APC attenuated the I/R-induced EPCR shedding in both young and aged hearts. Subsequent echocardiography showed that APC and APC-2Cys but not APC-E170A ameliorated cardiac dysfunction during I/R in both young and aged mice. Importantly, APC elevated the resistance of the aged heart to ischemic insults through stabilizing EPCR. However, all these cardioprotective effects of APC were blunted in the EPCR R84A/R84A mice versus its wild-type littermates. The ex vivo working heart and metabolomics results demonstrated that AMP-activated protein kinase (AMPK) mediates acute adaptive response while protein kinase B (AKT) is involved in chronic metabolic programming in the hearts with APC treatment. Conclusions: I/R stress causes shedding of the membrane EPCR in the heart, and administration of APC prevents I/R-induced cardiac EPCR shedding that is critical for limiting cardiac damage in aging.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Di Ren ◽  
Julia Fedorova ◽  
Jingwen Zhang ◽  
Zhibin He ◽  
Ji Li

Introduction: Activated protein C (APC) is a circulating protease with anti-coagulant property. Endothelial protein C receptor (EPCR) mediates APC's downstream events. We have revealed that APC exerts cardioprotective effects during ischemia and reperfusion (I/R). Hypothesis: There is an impaired APC signaling in aging and administration of APC restores APC signaling of aged heart to improve cardiac tolerance to ischemic insult caused by I/R stress. Methods: Young C57BL/6J (3-4 months), aged C57BL/6J (24-26 months), and EPCR R84A/R84A (3-4 months, C57BL6/J background) transgenic mice without APC binding affinity were subjected to ischemia (45 min) and reperfusion (24 hrs) by ligation/release of left anterior descending coronary artery. APC, signaling selective APC-2Cys, or anticoagulant selective APC-E170A was injected through jugular vein five-minutes before reperfusion. Results: I/R stress triggers APC signaling in both young and aged hearts, but APC activity was significantly impaired in the aged versus young hearts. Serum EPCR measurement demonstrated that membrane EPCR's shedding into circulation was dramatically promoted during I/R stress. Intriguingly, administration of APC significantly reduced EPCR shedding caused by I/R stress in both young and aged hearts but not EPCR R84A/R84A heart. The echocardiography data showed that APC and APC-2Cys but not APC-E170A ameliorated cardiac dysfunction by I/R insult in both young and aged mice. Interestingly, APC and APC-2Cys restored aged heart's resistance to a comparable level as young heart to ischemic damage. The cardioprotective effects of APC and ACP-2Cys are diminished in EPCR R84A/R84A mice. Furthermore, metabolomics analysis and working perfusion heart results demonstrated that AMP-activated protein kinase (AMPK) signaling mediates acute adaptive metabolic response while protein kinase B (Akt) signaling pathway is involved in chronic metabolic programming in the heart with APCs treatments. Conclusions: I/R stress causes membrane EPCR shedding in the heart and APC's cardioprotection against I/R injury is not related with its anti-coagulant activity. Administration of APC prevents I/R-induced cardiac EPCR shedding that is critical for limiting cardiac damage in aging.


Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 1003-1009 ◽  
Author(s):  
Xunzhen Zheng ◽  
Weihong Li ◽  
Jian-Ming Gu ◽  
Dongfeng Qu ◽  
Gary L. Ferrell ◽  
...  

Abstract Recent studies have shown that endothelial protein C receptor (EPCR) polymorphisms and soluble EPCR levels are associated with thrombotic diseases. It is unknown whether membrane EPCR (mEPCR) heterozygosity and/or physiologically elevated sEPCR levels directly impact the hemostatic balance and the outcome of endotoxemia. In these studies, thrombin infusion experiments revealed that EPCR heterozygosity (Procr+/−) impaired protein C activation by approximately 30%. Infusion of factor Xa with phospholipid demonstrated that the Procr+/−genotype increased the coagulant response relative to wild-type mice. Challenge of the Procr+/− mice with lipopolysaccharide (LPS) did not significantly exaggerate their response compared with wild-type mice. We also generated mice in which one allele of full-length EPCR was replaced by sEPCR (Procrs/+). Compared with Procr+/− mice, Procrs/+ mice had 5-fold higher sEPCR and similar mEPCR levels. Procr+/− and Procrs/+ mice generated similar levels of activated protein C (APC) upon thrombin infusion. They also exhibited a similar coagulant response upon factor Xa/phospholipid infusion. Only supraphysiologic levels of sEPCR could influence protein C activation and exaggerate the coagulant response. In conclusion, mEPCR, but not physiologically elevated sEPCR, regulated protein C activation. Procr heterozygosity results in a mild increase of thrombosis tendency and little influence on the response to endotoxin.


2015 ◽  
Vol 114 (12) ◽  
pp. 1144-1155 ◽  
Author(s):  
Eveline A. M. Bouwens ◽  
Fabian Stavenuiter ◽  
Laurent O. Mosnier

SummaryThe protein C (PC) system conveys beneficial anticoagulant and cytoprotective effects in numerous in vivo disease models. The endothelial protein C receptor (EPCR) plays a central role in these pathways as cofactor for PC activation and by enhancing activated protein C (APC)-mediated protease-activated receptor (PAR) activation. During inflammatory disease, expression of EPCR on cell membranes is often diminished thereby limiting PC activation and APC’s effects on cells. Here a caveolae-targeting glycosylphosphatidylinositol (GPI)-anchored EPCR (EPCR-GPI) was engineered to restore EPCR’s bioavailability via “cell painting.” The painting efficiency of EPCR-GPI on EPCR-depleted endothelial cells was time- and dose-dependent. The EPCR-GPI bioavailability after painting was long lasting since EPCR surface levels reached 400 % of wild-type cells after 2 hours and remained > 200 % for 24 hours. EPCR-GPI painting conveyed APC binding to EPCR-depleted endothelial cells where EPCR was lost due to shedding or shRNA. EPCR painting normalised PC activation on EPCR-depleted cells indicating that EPCR-GPI is functional active on painted cells. Caveolin-1 lipid rafts were enriched in EPCR after painting due to the GPI-anchor targeting caveolae. Accordingly, EPCR painting supported PAR1 and PAR3 cleavage by APC and augmented PAR1-dependent Akt phosphorylation by APC. Thus, EPCR-GPI painting achieved physiological relevant surface levels on endothelial cells, restored APC binding to EPCR-depleted cells, supported PC activation, and enhanced APC-mediated PAR cleavage and cytoprotective signalling. Therefore, EPCRGPI provides a novel tool to restore the bioavailability and functionality of EPCR on EPCR- depleted and -deficient cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 26-26 ◽  
Author(s):  
Edward J. Kerschen ◽  
Brian C. Cooley ◽  
Francis J. Castellino ◽  
John H. Griffin ◽  
Hartmut Weiler

Abstract Recombinant activated protein C (APC) reduces mortality of patients with severe inflammatory disease associated with multi-organ failure. APC exerts anticoagulant, anti-inflammatory, and cytoprotective effects. The contribution of these distinct APC activities to the overall therapeutic efficacy in septic patients is unknown. The aim of the study is to delineate the mechanism underlying the protective effect of APC in mouse endotoxemia. We first establish an experimental mouse model to demonstrate that recombinant murine APC reduces 6 day mortality of mice subjected to LPS-induced endotoxemia. APC treatment did not alter the extent of inflammatory cytokine release. Recombinant human APC did not exhibit therapeutic efficacy in this model. In contrast, recombinant human and mouse APC reduced to a similar extent experimentally induced arterial thrombus formation. The therapeutic efficacy of wild type recombinant murine APC was abolished in genetically engineered mice with reduced expression of the endothelial protein C receptor (EPCR). Recombinant mutant murine APC with greatly reduced anticoagulant potency was as effective as wild type murine APC in reducing mortality of mice subjected to LPS-induced septicemia. Mice homozygous for the Leiden polymorphism in the factor V (fV) gene, which renders coagulation factor V partially resistant to the anticoagulant effect of APC secondary to blocked fV proteolysis at R504 (R506 in humans), were refractory to the therapeutic benefit conveyed by administration of recombinant wild type mouse APC. In summary, these findings provide evidence that the therapeutic efficacy of recombinant APC is predominantly based on the ability of APC to interact with the endothelial protein C receptor, and that the anticoagulant activity of APC is not sufficient for achieving protection against mortality in a mouse model of endotoxemia. On the other hand, cleavage of fV at R506 appears necessary for retaining therapeutic efficacy in carriers of the fV Leiden allele.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allen M Andres ◽  
Chengqun Huang ◽  
Eric P Ratliff ◽  
Genaro Hernandez ◽  
Pamela Lee ◽  
...  

Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia in vitro and IPC in hearts (in vivo and ex vivo) to investigate the role of Parkin in mediating cardioprotection. In HL-1 cells, simulated ischemia induced Parkin translocation to mitochondria and mitochondrial elimination. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports implicating p62/SQSTM1 in mitophagy, we found that downregulation of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to simulated ischemia. While wild type mice showed p62 translocation to mitochondria after IPC, Parkin knockout mice exhibited attenuated translocation of p62 to mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sanjana Dayal ◽  
Sean X Gu ◽  
Katinan M Wilson ◽  
Ryan Hutchins ◽  
Steven R Lentz

In vitro studies have suggested that reactive oxygen species such as superoxide can produce prothrombotic effects, including enhanced platelet activation, increased tissue factor (TF) expression, and an oxidative modification in thrombomodulin impairing its capacity to enhance the generation of activated protein C (APC) by thrombin. It is not known, however, if elevated levels of superoxide accelerate susceptibility to experimental thrombosis in vivo . We used mice genetically deficient in superoxide dismutase-1 (SOD1, an antioxidant enzyme that dismutates superoxide to hydrogen peroxide), to test the hypothesis that lack of SOD1 enhances susceptibility to thrombosis. Susceptibility to carotid artery thrombosis in a photochemical injury model demonstrated that Sod1-/- mice formed stable occlusions significantly faster than Sod1+/+ mice (P<0.05). In an inferior vena cava (IVC) stasis model Sod1- /- mice developed significantly larger thrombi 48 hours after IVC ligation (P<0.05 vs. Sod1+/+ mice). After activation with thrombin (0.5 U/ml) or convulxin (200 ng/ml), no differences in surface expression of P-selectin or binding of fibrinogen were observed between platelets from Sod1-/- and Sod1+/+ mice. The expression of TF mRNA in lung measured by real time qPCR showed similar levels in Sod1-/- and Sod1 +/+ mice. However, the activation of exogenous protein C by thrombin in lung homogenates was decreased in Sod1 -/- mice (P<0.05 vs. Sod1 +/+ mice). Further, in vivo generation of activated protein C in response to thrombin (40 U/Kg) infusion was significantly lower in Sod1-/- mice (P<0.05 vs. Sod1+/+ mice). No differences in mRNA levels for thrombomodulin or endothelial protein C receptor were detected in Sod1 -/- mice vs. Sod1 +/+ mice, suggesting that altered generation of activated protein C in Sod1-/- mice may be related to a direct oxidative effect on thrombomodulin. In accordance, thrombomodulin treated with xanthine/hypoxanthine showed 40% loss of ability to activate protein C that was overcome by addition of SOD and catalase (P<0.05). We conclude that endogenous SOD1 in mice protects from impaired generation of activated protein C and accelerated thrombosis.


2004 ◽  
Vol 122 (6) ◽  
pp. 836-842 ◽  
Author(s):  
Marianne Wilmer ◽  
Christoph Stocker ◽  
Beatrice Bühler ◽  
Brigitte Conell ◽  
Andreas Calatzis

Sign in / Sign up

Export Citation Format

Share Document