scholarly journals Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin

Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3498-3506 ◽  
Author(s):  
Graeme M. Birdsey ◽  
Nicola H. Dryden ◽  
Valerie Amsellem ◽  
Frank Gebhardt ◽  
Kapil Sahnan ◽  
...  

Abstract Tight regulation of the balance between apoptosis and survival is essential in angiogenesis. The ETS transcription factor Erg is required for endothelial tube formation in vitro. Inhibition of Erg expression in human umbilical vein endothelial cells (HUVECs), using antisense oligonucleotides, resulted in detachment of cell-cell contacts and increased cell death. Inhibition of Erg expression by antisense in HUVECs also lowered expression of the adhesion molecule vascular endothelial (VE)–cadherin, a key regulator of endothelial intercellular junctions and survival. Using chromatin immunoprecipitation, we showed that Erg binds to the VE-cadherin promoter. Furthermore, Erg was found to enhance VE-cadherin promoter activity in a transactivation assay. Apoptosis induced by inhibition of Erg was partly rescued by overexpression of VE-cadherin–GFP, suggesting that VE-cadherin is involved in the Erg-dependent survival signals. To show the role of Erg in angiogenesis in vivo, we used siRNA against Erg in a Matrigel plug model. Erg inhibition resulted in a significant decrease in vascularization, with increase in caspase-positive endothelial cells (ECs). These results identify a new pathway regulating angiogenesis and endothelial survival, via the transcription factor Erg and the adhesion molecule VE-cadherin.

Author(s):  
Yuanyuan Li ◽  
Ying Shen ◽  
Yudan Zheng ◽  
Shundong Ji ◽  
Mengru Wang ◽  
...  

We previously demonstrated the immunostimulatory efficacy of Pseudomonas aeruginosa flagellar hook protein FlgE on epithelial cells, presumably via ectopic ATP synthases or subunits ATP5B on cell membranes. Here, by using recombinant wild-type FlgE, mutant FlgE (FlgEM; bearing mutations on two postulated critical epitopes B and F), and a FlgE analog in pull-down assay, Western blotting, flow cytometry, and ELISA, actual bindings of FlgE proteins or epitope B/F peptides with ATP5B were all confirmed. Upon treatment with FlgE proteins, human umbilical vein endothelial cells (HUVECs) and SV40-immortalized murine vascular endothelial cells manifested decreased proliferation, migration, tube formation, and surface ATP production and increased apoptosis. FlgE proteins increased the permeability of HUVEC monolayers to soluble large molecules like dextran as well as to neutrophils. Immunofluorescence showed that FlgE induced clustering and conjugation of F-actin in HUVECs. In Balb/c-nude mice bearing transplanted solid tumors, FlgE proteins induced a microvascular hyperpermeability in pinna, lungs, tumor mass, and abdominal cavity. All effects observed in FlgE proteins were partially or completely impaired in FlgEM proteins or blocked by pretreatment with anti-ATP5B antibodies. Upon coculture of bacteria with HUVECs, FlgE was detectable in the membrane and cytosol of HUVECs. It was concluded that FlgE posed a pathogenic ligand of ectopic ATP5B that, upon FlgE–ATP5B coupling on endothelial cells, modulated properties and increased permeability of endothelial layers both in vitro and in vivo. The FlgE-ectopic ATP5B duo might contribute to the pathogenesis of disorders associated with bacterial infection or ectopic ATP5B-positive cells.


Author(s):  
Shuang-Shuang Dong ◽  
Dan-Dan Dong ◽  
Zhang-Fu Yang ◽  
Gui-Qi Zhu ◽  
Dong-Mei Gao ◽  
...  

BackgroundAngiogenesis is a crucial process in tumorigenesis and development. The role of exosomes derived from hepatocellular carcinoma (HCC) cells in angiogenesis has not been clearly elucidated.Methods and ResultsExosomes were isolated from HCC cell lines (HCCLM3, MHCC97L, and PLC/RFP/5) by ultracentrifugation and identified by nano transmission electron microscopy (TEM), NanoSight analysis and western blotting, respectively. In vitro and in vivo analyses showed that exosomes isolated from highly metastatic HCC cells enhanced the migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs) compared to exosomes derived from poorly metastatic HCC cells. In addition, microarray analysis of HCC-Exos was conducted to identify potential functional molecules, and miR-3682-3p expression was found to be significantly downregulated in exosomes isolated from highly metastatic HCC cells. By in vitro gain-of-function experiments, we found that HCC cells secreted exosomal miR-3682-3p, which negatively regulates angiopoietin-1 (ANGPT1), and this led to inhibition of RAS-MEK1/2-ERK1/2 signaling in endothelial cells and eventually impaired angiogenesis.ConclusionOur study elucidates that exosomal miR-3682-3p attenuates angiogenesis by targeting ANGPT1 through RAS-MEK1/2-ERK1/2 signaling and provides novel potential targets for liver cancer therapy.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Cheng-Hsiang Kuo ◽  
Po-Ku Chen ◽  
Bi-Ing Chang ◽  
Meng-Chen Sung ◽  
Chung-Sheng Shi ◽  
...  

AbstractLewis Y Ag (LeY) is a cell-surface tetrasaccharide that participates in angiogenesis. Recently, we demonstrated that LeY is a specific ligand of the recombinant lectin-like domain of thrombomodulin (TM). However, the biologic function of interaction between LeY and TM in endothelial cells has never been investigated. Therefore, the role of LeY in tube formation and the role of the recombinant lectin-like domain of TM—TM domain 1 (rTMD1)—in antiangiogenesis were investigated. The recombinant TM ectodomain exhibited lower angiogenic activity than did the recombinant TM domains 2 and 3. rTMD1 interacted with soluble LeY and membrane-bound LeY and inhibited soluble LeY-mediated chemotaxis of endothelial cells. LeY was highly expressed on membrane ruffles and protrusions during tube formation on Matrigel. Blockade of LeY with rTMD1 or Ab against LeY inhibited endothelial tube formation in vitro. Epidermal growth factor (EGF) receptor in HUVECs was LeY modified. rTMD1 inhibited EGF receptor signaling, chemotaxis, and tube formation in vitro, and EGF-mediated angiogenesis and tumor angiogenesis in vivo. We concluded that LeY is involved in vascular endothelial tube formation and rTMD1 inhibits angiogenesis via interaction with LeY. Administration of rTMD1 or recombinant adeno-associated virus vector carrying TMD1 could be a promising antiangiogenesis strategy.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qiulian Zhou ◽  
Dongchao Lv ◽  
Qi Sun ◽  
Ping Chen ◽  
Yihua Bei ◽  
...  

Myocardial infarction (MI) is among major causes of morbidity and mortality associated with coronary artery disease. Angiogenesis improves tissue perfusion and cardiac repair after MI. Therefore, angiogenesis is considered to be a novel therapeutic way for ischemic heart diseases. MicroRNAs (miRNAs, miRs) have been reported to play important roles in regulating post-ischemic neovascularization. The current study aims at investigating the role of miR-4261 in angiogenesis. We found that miR-4261 mimics increased, while miR-4261 inhibitors decreased the proliferation of human umbilical vein endothelial cells (HUVEC) using EdU incorporation assay (17.25%±1.31% vs 30.91%±0.92% in nc-mimics vs mir-4261-mimics, 17.91%±1.36% vs 8.51%±0.82% in nc-inhibitor vs mir-4261-inhibitor, respectively) and CCK-8 assays (0.84±0.04 vs 1.38±0.04 in nc-mimics vs mir-4261-mimics, 0.80±0.02 vs 0.72±0.01 in nc-inhibitor vs mir-4261-inhibitor, respectively). The wound healing assay showed that miR-4261 mimic transfection resulted in a significant increase in the migration of HUVEC compared to that of the negative controls while miR-4261 inhibition had the opposite effects. Tube formation assays showed that HUVEC transfected with miR-4261 mimics increased the number of tubes formed (57.25±2.56 vs 81.5±2.53 in nc-mimics vs mir-4261-mimics, respectively), while miR-4261 inhibitor-transfected cells had the opposite effect (56.55±0.45 vs 41.38±0.52 in nc-inhibitor vs mir-4261-inhibitor, respectively). These results indicate that miR-4261 play an important role in regulating angiogenesis. However, it remains unknown which target gene mediated the effects of miR-4261. Thus, it will be of great interest to further investigate the molecular mechanisms of miR-4261 in the proliferation, migration, and tube formation of HUVEC in vitro. MiR-4261 could be a potential therapeutic target to enhance angiogenesis.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qi Sun ◽  
Dongcao Lv ◽  
Qiulian Zhou ◽  
Yihua Bei ◽  
Junjie Xiao

MicroRNAs (miRNAs, miRs), endogenous small non-coding RNA, have been shown to act as essential regulators in angiogenesis which plays important roles in improving blood flow and cardiac function following myocardial infarction. The current study investigated the potential of miR-4260 in endothelial cell function and angiogenesis using human umbilical vein endothelial cells (HUVEC). Our data demonstrated that overexpression of miR-4260 was associated with increased proliferation and migration of HUVEC using EdU incorporation assay (17.25%±1.31 vs 25.78%±1.24 in nc-mimics vs miR-4260 mimics, respectively) and wound healing assay, respectively. While downregulation of miR-4260 inhibited the proliferation (17.90%±1.37 vs 10.66%±1.41 in nc-inhibitor vs miR-4260 inhibitor, respectively) and migration of HUVEC. Furthermore, we found that miR-4260 mimics increased (129.75±3.68 vs 147±3.13 in nc-mimics vs miR-4260 mimics, respectively), while miR-4260 inhibitor decreased the tube formation of HUVECs in vitro (123.25±2.17 vs 92±4.45 in nc-inhibitor vs miR-4260 inhibitor expression, respectively). Our data indicate that miR-4260 contributes to the proliferation, migration and tube formation of endothelial cells, and might be essential regulators for angiogenesis. Further study is needed to investigate the underlying mechanism that mediates the role of miR-4260 in angiogenesis by identifying its putative downstream target genes.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 404 ◽  
Author(s):  
Takuya Miyagawa ◽  
Zhi-Yu Chen ◽  
Che-Yi Chang ◽  
Ko-Hua Chen ◽  
Yang-Kao Wang ◽  
...  

Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3268-3276 ◽  
Author(s):  
Chia Hsin Yeh ◽  
Hui-Chin Peng ◽  
Tur-Fu Huang

Abstract Endothelial integrins play an essential role in angiogenesis and cell survival. Accutin, a new member of disintegrin family derived from venom of Agkistrodon acutus, potently inhibited human platelet aggregation caused by various agonists (eg, thrombin, collagen, and, adenosine diphosphate [ADP]) through the blockade of fibrinogen binding to platelet glycoprotein IIb/IIIa (ie, integrin IIbβ3). In this report, we describe that accutin specifically inhibited the binding of monoclonal antibody (MoAb) 7E3, which recognizes integrin vβ3, to human umbilical vein endothelial cells (HUVECs), but not those of other anti-integrin MoAbs such as 2β1, 3β1, and 5β1. Moreover, accutin, but not the control peptide GRGES, dose-dependently inhibited the 7E3 interaction with HUVECs. Both 7E3 and GRGDS, but not GRGES or Integrelin, significantly blocked fluorescein isothiocyanate-conjugated accutin binding to HUVEC. In functional studies, accutin exhibited inhibitory effects on HUVEC adhesion to immobilized fibrinogen, fibronectin and vitronectin, and the capillary-like tube formation on Matrigel in a dose- and RGD-dependent manner. In addition, it exhibited an effective antiangiogenic effect in vivo when assayed by using the 10-day-old embryo chick CAM model. Furthermore, it potently induced HUVEC apoptotic DNA fragmentation as examined by electrophoretic and flow cytometric assays. In conclusion, accutin inhibits angiogenesis in vivo and in vitro by blocking integrin vβ3 of endothelial cells and by inducing apoptosis. The antiangiogenic activity of disintegrins might be explored as the target of developing the potential antimetastatic agents. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document